Abstract:
Methods, systems, and apparatus, including computer program products, for implementing interference cancellation across base stations. Communications information for transmitting to a receiving device is received from a first base station at a second base station. At the second base station, second communications information is generated for transmission to the receiving device from the second base station. The second communications information comprises data to reduce interference with the first communications information.
Abstract:
In general, the subject matter described in this specification can be embodied in methods, systems, and program products for adaptive data unit transmission. A sliding window is filled with data units and designates a sliding window start position and a sliding window end position. A value for each of the data units in the sliding window is stored, the value representing a maximum number of times that each data unit is to be transmitted. The stored value is different among at least two of the data units. Data units are selected from the sliding window to be assembled into a packet. An assembled packet is transmitted to a receiving computerized device. A determination that the data unit positioned at the sliding window start position has been transmitted a maximum number of time is performed, and in response a different data unit is positioned at the sliding window start position.
Abstract:
A method can include receiving, at a transmitter, during a symbol time that comprises a plurality of chip times, a data value for each of a plurality of distinct data channel inputs. During each chip time, the method can include (a) indexing a different row of a matrix of data bits; (b) decoding one channel input using a first subset of one or more columns of the indexed row; (c) determining a code value for the decoded one channel from a second subset of one or more columns of the indexed row; and (d) providing the coded data value to a transmission circuit for transmission to a receiver. Actions (a) to (d) can be performed for each of the plurality of chip times in the symbol time. In some implementations, the matrix of data bits is a Hadamard matrix with randomly shuffled rows.
Abstract:
A method may include identifying a repeating frame structure for communication between a MIMO base station and one or more wireless devices, the frame structure including a plurality of slots, with each slot including an uplink portion and a downlink portion, and each uplink portion and downlink portion comprising a plurality of sub-slots, receiving, at the wireless base station, an identification of a first wireless device of the one or more wireless devices, assigning to the first wireless device, a sub-slot in an uplink portion of a static slot in the frame structure, communicating, to the first wireless device, information from which the first wireless device can identify the sub-slot, and communicating with the one or more wireless devices by associating data in the first sub-slot with the first wireless device.
Abstract:
In general, the subject matter described in this specification can be embodied in methods, systems, and program products for adaptive data unit transmission. A sliding window is filled with data units and designates a sliding window start position and a sliding window end position. A value for each of the data units in the sliding window is stored, the value representing a maximum number of times that each data unit is to be transmitted. The stored value is different among at least two of the data units. Data units are selected from the sliding window to be assembled into a packet. An assembled packet is transmitted to a receiving computerized device. A determination that the data unit positioned at the sliding window start position has been transmitted a maximum number of time is performed, and in response a different data unit is positioned at the sliding window start position.
Abstract:
A method can include receiving, at a transmitter, during a symbol time that comprises a plurality of chip times, a data value for each of a plurality of distinct data channel inputs. During each chip time, the method can include (a) indexing a different row of a matrix of data bits; (b) decoding one channel input using a first subset of one or more columns of the indexed row; (c) determining a code value for the decoded one channel from a second subset of one or more columns of the indexed row; and (d) providing the coded data value to a transmission circuit for transmission to a receiver. Actions (a) to (d) can be performed for each of the plurality of chip times in the symbol time. In some implementations, the matrix of data bits is a Hadamard matrix with randomly shuffled rows.