摘要:
A method of heating a quartz glass tube with microwaves, which method comprises supplying a gas for plasma generation in the quartz glass tube, applying microwaves to the quartz glass tube so as to generate a hot plasma in the quartz glass tube and to preheat the quartz glass tube, and then discontinuing the supply of the gas for plasma generation while applying the microwaves, whereby the quartz glass tube absorbs the microwaves to heat the quartz glass tube to a sufficient temperature in a very quick and clear manner.
摘要:
A rod-in-tube method for producing a glass preform for use in the fabrication of an optical fiber, which comprises steps of inserting a glass rod constituting a core material in a glass tube constituting a cladding material, heating the rod-tube composite by an outer heating source with introducing, in the gap between the rod and the tube, a gaseous mixture containing a silicon halogenide, a fluorine-containing compound and oxygen gas in which a ratio of silicon and fluorine (Si/F) is larger than 1/300 and smaller than 1/5, and heating and fusing the composite at a temperature not lower than 1,900.degree. C. with filling the gap by a gaseous mixture comprising a halogen-containing compound and oxygen gas; from which glass preform, an optical fiber with low attenuation of light transmission, particularly in a long wavelength range, is fabricated.
摘要:
A method for producing a glass preform for use in fabrication of an optical fiber, which comprises steps of forming a cylindrical rod of glass having a refractive index distribution with axial symmetry around the rod axis by an VAD method, stretching the rod glass to decrease its diameter, inserting the stretched rod in a glass tube having a refractive index distribution with axial symmetry around the tube axis and heating and melting a complex of the stretched rod and the tube to integrate them from the glass preform produced by the method, an optical fiber having precisely controlled refractive index distribution can be fabricated.
摘要:
An optical fiber comprising a core essentially made of quartz and a cladding made of fluorine added quartz is fabricated with good productivity from a glass preform produced by a method comprising maintaining a hollow cylindrical porous glass preform in a first high temperature atmosphere comprising at least one fluorine-containing compound with jetting a cooling gas through the central hollow part of the porous glass preform to grade the amount of fluorine to be added in the radial direction of the porous glass preform and then sintering the porous glass preform in a second high temperature atmosphere kept at a temperature higher than the first high temperature atmosphere to make it transparent.
摘要:
An optical fiberglass preform having fluorine selectively added to its cladding is produced by:depositing soot of quartz glass on a pipe from starting member by using burners for synthesizing glass soot to form a porous glass preform consisting of a core porous glass body a peripheral portion of which has a larger bulk density than the other portion and a cladding porous glass body,heating said porous glass preform in a dehydration atmosphere while supplying dehydration gas through the pipe form starting member andheating and vitrifying the dehydrated porous glass preform in an atmosphere containing a fluorine-containing compound.
摘要:
A surface of an optical fiber is coated by a method for coating a surface of an optical fiber with carbon comprising steps of introducing an optical fiber in a reaction chamber containing a coating raw material comprising carbon, hydrogen and halogen atoms and depositing on the surface of the optical fiber a carbon layer formed from the raw material by chemical vapor deposition, whereby the coated optical fiber has improved initial tensile strength and absorbs less hydrogen.
摘要:
A method for producing a glass preform for an optical fiber comprising a core and a cladding containing fluorine is fisclosed. The method comprises forming a porous glass layer of substantially pure quartz on an outer surface of a fused glass rod consisting of a central portion of substantially pure quartz and a peripheral portion of quartz glass containing fluorine, and heating a composite of the fused glass rod and the porous glass layer in an atmosphere containing fluorine to add fluorine to the porous glass layer and to make it transparent, by which contamination of glass with hydroxyl groups can be prevented and light transmission characteristics of an optical fiber fabricated from the glass preform are improved.
摘要:
A method for producing a glass preform for optical fibers in which fluorine is efficiently incorporated into the preform without incorporation of Fe or Cu. A fine glass particle mass, made primarily of quartz, is converted into transparent glass by heating it in a gas atmosphere containing at least a fluorine-based compound gas and a chlorine-based compound gas. The preferred heating range is 1,100.degree. to 1,400.degree. C.
摘要:
A method for producing a glass preform comprising flame hydrolyzing a glass raw material in an oxyhydrogen flame to form glass fine particles of quartz, depositing the glass fine particles on a seed member to produce a solid or hollow cylindrical soot preform at least of a part of which contains GeO.sub.2, and heating and sintering the soot preform by introducing it in an atmosphere comprising an inert gas at least a part of which is kept at a temperature not lower than 1,600.degree. C. at an introducing rate not smaller than 3 mm/min, from the glass preform produced by which method, an optical fiber having longitudinally homogeneous composition and low attenuation of light transmission is fabricated.
摘要:
A process for producing high-purity silica glass wherein glass-forming chlorides, hydrogen gas, oxygen and an inert gas are supplied from a glass burner, the chlorides are decomposed by flame oxidation to form fine grains of glass which are deposited on a starting member and the glass deposit is sintered to provide a transparent vitreous substance, the volume ratio of oxygen gas to the sum of the chlorides and hydrogen gas being greater than about 0.6, preferably greater than about 1.0, and less than about 20.