Abstract:
An electrical connection structure is provided for protecting a barrier metal layer within a contact opening during the formation of an aluminum interconnection layer overlying a tungsten plugged connection structure. The deposited tungsten plug overlying the barrier metal layer is etched back sufficiently to create a slight recess at the opening. A thin layer of tungsten is then selectively deposited for filling the recess. This layer acts as an etch stop during aluminum interconnection layer formation and protects the underlying barrier metal layer.
Abstract:
A multi-level transport truck apparatus, particularly suitable for use with trucks that release contents through rearward tilting of the container portion, having a main container portion divided into at least upper and lower container portions by plate members insertable within u-shaped channels within the main container and defining seperate container spaces. There is further provided rear door members corresponding to each of the container spaces for selectively dumping the contents of each of the spaces depending if the doors are secured or unsecured. Further, there are identification tags on each door member indicating the contents of each container space, with each tag removeable as the contents of the space is changed.
Abstract:
The invention provides a system and program product for attenuating a radio frequency identification (RFID) reader. In one embodiment, the system includes optimizing a coverage area of an RFID reader.
Abstract:
An archery bow riser that generally aligns a moveable arrow rest with a longitudinal axis in order to minimize a rotational effect of an archer's forehand when drawing a bow string.
Abstract:
The invention provides a method for attenuating a radio frequency identification (RFID) reader. In one embodiment, the method includes optimizing a coverage area of an RFID reader.
Abstract:
A support pillar 426 for use with a micromechanical device, particularly a digital micromirror device, comprising a pillar material 422 supported by a substrate 400 and covered with a metal layer 406. The support pillar 426 is fabricated by depositing a layer of pillar material on a substrate 400, patterning the pillar layer to define a support pillar 426, and depositing a metal layer 406 over the support pillar 426 enclosing the support pillar. A planar surface even with the top of the pillar may be created by applying a spacer layer 432 over the pillars 426. After applying the spacer layer 432, the spacer layer 432 is etched to expose the tops of the pillars.
Abstract:
Support pillar 426 for use with a micromechanical device, particularly a digital micromirror device, comprising a pillar material 422 supported by a substrate 400 and covered with a metal layer 406. The support pillar 426 is fabricated by depositing a layer of pillar material on a substrate 400, patterning the pillar layer to define a support pillar 426, and depositing a metal layer 406 over the support pillar 426 enclosing the support pillar. A planar surface even with the top of the pillar may be created by applying a spacer layer 432 over the pillars 426. After applying the spacer layer 432, the spacer layer 432 is etched to expose the tops of the pillars.
Abstract:
A method of fabricating debris intolerant devices 30, and especially micro-mechanical devices such as DMDs, that allows wafers 22 to be sawn prior to completing all fabrication steps. Some devices are too fragile to allow cleaning operations to be performed after fabrication of the device. A solution is to saw and clean the wafers prior to completing the fabrication steps that make the device fragile. To prevent having to process the chips 30 individually, a substrate wafer 28 is attached to the backside of the dicing tape 24. This substrate wafer holds the sawn chips 30 in alignment allowing the remaining fabrication steps to be performed in wafer form.
Abstract:
A process for forming a smooth conformal refractory metal film on an insulating layer having a via formed therein. This process provides extremely good planarity and step coverage when used to form contacts in semiconductor circuits and, in addition, offers improved wafer alignment capability as well as enhanced reliability which result from the smooth surface morphology. The process includes forming contact openings through an insulating layer to a semiconductor substrate; depositing a first blanket layer of titanium using deposition conditions that provide a conformal film that exhibits good step coverage at the contact opening; and forming a second blanket layer of titanium using deposition conditions that provide reduced surface asperity height. The process is ideally suited to forming an electrical interconnection system for semiconductor integrated circuit devices such as static or dynamic random access memories and is particularly useful in VLSI devices that incorporate multiple levels of interconnect.
Abstract:
A method is provided for forming a contact plug (40) in a contact (34) on a semiconductor substrate (30). A dielectric layer (32) is applied to the substrate (30) and then etched to form the contact (34). A layer (38) is then formed over the dielectric (32) and the contact (34). The layer (38) is removed from all surfaces, except the vertical sidewalls (36) within the contact (34). A metal plug (40) is then deposited in the contact (34) forming cup-shaped layers (42). The nonselectivity of the layer (38) allows the metal of plug (40) to be applied to the contact (34) without encroaching upon the substrate (30) or forming bumps on the surface (44) of the dielectric (32).