Abstract:
A multi-level converter includes a plurality of alternating current (AC) terminals connected to an AC source or load, at least three direct current (DC) terminals connected to a multi-level DC source or load, and a plurality of solid-state switches that are selectively turned On and Off to connect each of the plurality of AC terminals to one of the DC terminals. A controller provides PWM control signals to the solid-state switches. The controller utilizes space vector modulation to organize the various switching state configurations, and increments the switching states during a first half of the switching period and decrements the switching states during a second half of the switching period to center-align the PWM signals provided about the center of the switching period. The switching states utilized during the switching period dictate the PWM control signals provided to the plurality of switches employed in the three-level converter.
Abstract:
A converter implementing a dual-reference three-level pulse width modulation (PWM) technique for constraining a midpoint duty cycle is provided. The converter includes a phase leg that includes upper, mid-upper, mid-lower, and lower switches. The upper, mid-upper, mid-lower, and lower switches are connected in series between direct current (DC) positive and negative leads, with an alternating current (AC) output lead connected at a junction of the mid-upper and mid-lower switches. The phase leg includes a first clamping diode connected to the junction of the switch and mid-upper switches and connected to a DC midpoint lead and a second clamping diode connected between the DC midpoint lead and connected to the junction of the mid-lower and lower switches. The converter is electrically coupled to and operatively associated with a controller to receive control signals to drive the converter to constrain the midpoint duty cycle between the DC midpoint and AC output leads.
Abstract:
A system and method for controlling a DC midpoint terminal voltage of a three level inverter is provided. The method includes receiving an input power signal at a three level motor controller system that includes a three level inverter, measuring, using a current sensor in the three level motor controller system, a DC current of the input power signal before the input power signal is provided to the three level inverter, and adjusting a zero-sequence inverter output voltage to adjust a midpoint voltage at the DC midpoint based on the measured DC current.
Abstract:
A power converter system includes an interleaved power converter having a plurality of parallel-connected phase legs between DC terminals and an AC terminal. A plurality of parallel-connected inductors are each connected to one of the plurality of parallel-connected phase legs to provide a summed output of the parallel-connected phase legs to the AC terminal. A controller generates PWM signals used to control the state of each of the plurality of phase legs by comparing a carrier signal to a reference signal, wherein a period of the carrier signal is randomly varied from a nominal period.
Abstract:
A method of operating a power conversion system including converting variable frequency AC voltage to constant frequency AC voltage by a power converter, setting a first peak current reset threshold above operating currents previously observed during steady state short circuit current regulation in by a controller of the power converter, setting a second peak current reset threshold at a current lower than the previously observed steady state short-circuit regulation point observed during previous operation during steady state short circuit current regulation by the controllers of the power converter, resetting inverter converter AC output regulating voltage to 0 volts, and ramping AC output regulating voltage back up into steady-state operation when the second a peak current reset threshold is exceeded.
Abstract:
A power conversion system includes a power source, a matrix converter, and a controller. The power source is configured to produce an input power. The matrix converter is configured to convert the input power to output power and includes a plurality of normally-on switches and a plurality of normally-off switches. The controller is configured to control the plurality of normally-on switches and the plurality of normally-off switches to control the output power. The plurality of normally-on switches provide the input power directly as the output power when the controller is inactive.
Abstract:
A multi-level power converter system includes a multi-level power converter configured to synthesize at least three direct current (DC) voltages into an alternating current (AC) output voltage, and includes a plurality of transistors. A controller generates pulse-width modulation (PWM) signals used to control a state of the plurality of transistors of the multi-level converter by comparing first and second carrier signals to a reference signals, wherein a period of the first and second carrier signals is randomly varied from a nominal period.