Abstract:
In an example, a data unit includes a mounting to removably mount the data unit on a receiving portion of an additive manufacturing build material container, a data source to provide data comprising a plurality of additive manufacturing parameters and a communications interface to communicate with a reader of an additive manufacturing build material processing apparatus. The communications interface is to transmit data from the data source to the additive manufacturing build material processing apparatus.
Abstract:
According to one example, there is provided a printing system. The printing system comprises a support having a plurality of spaced apertures and a color sensor moveable to measure light from each aperture. The printing system further comprises a controller to control the color sensor to measure characteristics of light emitted through each aperture, and to determine, for each aperture, light calibration data.
Abstract:
In an example, a data unit includes a mounting to removably mount the data unit on a receiving portion of an additive manufacturing build material container, a data source to provide data comprising a plurality of additive manufacturing parameters and a communications interface to communicate with a reader of an additive manufacturing build material processing apparatus. The communications interface is to transmit data from the data source to the additive manufacturing build material processing apparatus.
Abstract:
A method for reducing artefacts in printed objects comprises receiving print data to be printed by a printhead arrangement, the printhead arrangement being movable in a print direction and comprising a plurality of printhead dies, wherein printhead dies adjacent to each other comprise an overlap area when viewed in the print direction. The print data to be printed are modified near and/or at the overlap areas between printhead dies of the printhead arrangement to compensate for drop placement.
Abstract:
Certain examples described herein control an amount of a functional agent that is deposited in a three-dimensional printing system. In certain examples, an amount of a functional agent is controlled based on a distance function, wherein the distance function is associated with a distance between a particular portion of an object to be fabricated and a surface of the object. The functional agent may be a binder, a fusing agent or a detailing agent, amongst others.
Abstract:
In an example, a data unit includes a mounting to removably mount the data unit on a receiving portion of an additive manufacturing build material container, a data source to provide data comprising a plurality of additive manufacturing parameters and a communications interface to communicate with a reader of an additive manufacturing build material processing apparatus. The communications interface is to transmit data from the data source to the additive manufacturing build material processing apparatus.
Abstract:
In an example, a data unit includes a data unit mounting having a circuitry region, a registration portion, and a retaining feature. Circuitry comprising a data source to provide at least one additive manufacturing parameter is arranged on the circuitry region of the mounting. The data unit mounting is to be removably mounted on a receiving portion of an additive manufacturing build material component, such that the registration portion is to be received in a corresponding guide portion of the receiving portion of the additive manufacturing build material component, and the retaining feature is prevent removal of the data unit from the receiving portion unless deformed. Deformation of the retaining feature to effect removal of the data unit from the receiving portion may be a permanent deformation.
Abstract:
A printer and a method of processing an image (1) to be printed with a printer which has a printing unit arranged to produce a printout from image-representing print data of the image, and a processing unit for processing image-representing input data of the image so as to generate the image-representing print data. The processing unit is arranged for separating the image into a line detail sub-image (20) containing edge and line details, and an area detail sub-image (25) containing area details, performing a first printing mode processing pipeline on the line detail sub-image and performing a second, different printing mode processing pipeline on the area detail sub-image, and generating multi-layer print mask data, wherein at least one print mask data layer is usable to print the line detail sub-image in at least one line detail print pass, and the remaining, i.e. at least one of the print mask data layers being used to print the area detail sub-image in at least one area detail print pass to produce an image (50) which has optimized image quality.
Abstract:
Implementations disclose a method and system for providing a self-adaptive image. According to one implementation, a first non-white ink layer on is deposited on a substrate. Furthermore, a white ink layer is deposited over the first non-white ink layer and below a second non-white ink layer deposited thereon.
Abstract:
A printer is disclosed. The printer is calibrated for use with colored media. The printer is calibrated by converting an original color look up table (CLUT) for use on any colored media to a modified CLUT for use on colored media with a measured color. Each of a plurality of output colors in the original CLUT are modified using the measured color of the media.