Abstract:
In an example, a piezoelectric printhead assembly includes a micro-electro mechanical system (MEMS) die including a plurality of nozzles. An application-specific integrated circuit (ASIC) die is coupled to the MEMS die by a plurality of wire bonds, wherein each of the wire bonds corresponds to a respective nozzle of the plurality of nozzles. An arbitrary data generator (ADG) on the ASIC is to provide a digital data sequence, and a phase selector is to enable multiple data read operations of the ADG to generate multiple delayed digital data sequences.
Abstract:
In an example, a piezoelectric printhead assembly includes a micro-electro mechanical system (MEMS) die including a plurality of nozzles. An application-specific integrated circuit (ASIC) die is coupled to the MEMS die by a plurality of wire bonds, wherein each of the wire bonds corresponds to a respective nozzle of the plurality of nozzles. An arbitrary data generator (ADG) on the ASIC is to provide a digital data sequence, and a phase selector is to enable multiple data read operations of the ADG to generate multiple delayed digital data sequences.
Abstract:
A fluidic die may include a fluid actuator comprising an electrical resistor, a power node to supply electrical current to the resistor to drive the fluid actuator, a low side switch transistor connected to a ground node and having a gate to control the flow of electrical current through the resistor, a voltage regulator to receive electrical power from the power node and to output a predetermined voltage and a level shifter to control to output a low side switch transistor gate drive voltage using the predetermined voltage and based upon control signals to control the gate to control fluid displacement by the fluid actuator. The predetermined voltage is greater than a voltage of the control signals and is independent of a resistance of the ground node.
Abstract:
First electronics may determine a count of bubble jet resistors to be fired by a fire pulse group. A fire pulse generator may generate a fire pulse train for bubble jet resistors, the fire pulse train comprising a precursor pulse and a firing pulse separated by a dead time. Second electronics may adjust a width of the fire pulse for the bubble jet resistors of the fire pulse group by maintaining a first edge of the fire pulse relative to the precursor pulse and adjusting a second edge of the fire pulse relative to the precursor pulse based upon the determined count for the fire pulse group.
Abstract:
An inkjet printhead including a plurality of printhead dies, each printhead die including at least one crack sense resistor, at least one analog bus connected to each printhead die, and a controller separate from the plurality of printhead dies. The controller is configured to provide a known current to the at least one crack sense resistor of each printhead die in a selectable pattern via the at least one analog bus and to determine whether the printhead dies are cracked based on resulting voltages produced on the at least one analog bus.
Abstract:
A wide array printhead module includes a plurality of printhead die, each of the printhead die includes a number of nozzles. The nozzles form a number of primitives. A nozzle firing heater is coupled to each of the nozzles. An application specific integrated circuit (ASIC) controls a number of activation pluses that activate the nozzle firing heaters for each of the nozzles associated with the primitives. The activation pulses are delayed between each of the primitives via internal delays and external delays to reduce peak power demands of the printhead die. The ASIC determines the internal delays within each printhead die.
Abstract:
In an example, a piezoelectric printhead assembly includes a micro-electro mechanical system (MEMS) die including a plurality of nozzles. An application-specific integrated circuit (ASIC) die is coupled to the MEMS die by a plurality of wire bonds, wherein each of the wire bonds corresponds to a respective nozzle of the plurality of nozzles. An arbitrary data generator (ADG) on the ASIC is to provide a digital data sequence, and a multiplier is to scale multiple nozzles of the plurality of nozzles.