Abstract:
A method of configuring an automation control system using point configuration software. At least an extract from a control program file having program elements and program element attributes for executing in an automatic controller of the automation control system is translated into a common representation including common program element types and common attributes. Mapping template files are applied including mapping rules and mapping parameters defining how the program elements and program element attributes are mapped into at least one automation system point with point attributes, and values for each point attribute. Common program element types and/or common attributes are matched with the mapping template files according to the mapping rules to generate at least one matching program element. The matching program element is converted into an automation system point configuration (system point configuration) which is stored in persistent storage of or accessible by the automation control system.
Abstract:
An internet of things (IoT) edge appliance is configured to perform a method that includes receiving a configuration signal to configure the IoT edge appliance to communicate with at least one of a first device on the cloud network or a second device on the industrial process control and automation system network. The method also includes configuring a communication link with a cloud network and an industrial process control and automation system network. The method further includes communicating data with the at least one of the first device on the cloud network or the second device on the industrial process control and automation system network.
Abstract:
An energy control system (ECS) for controlling an energy storage system (ESS's) that includes energy storage devices(s) or an energy storage combination (ESDC's) including≥1 of the energy storage devices and ≥1 of the energy storage combinations. A power conversion system is coupled to an output of the ESDC, and a transformer is coupled to an output of the power conversion system. The ECS includes an ECS server and an ESS adapter configured for providing an interface between ECS server and the ESS. The ECS server is configured for reading status data from the ESS and submitting schedules including selected charging and discharging times to the ESS, monitoring or displaying a variance between an expected performance of the ESS based on the schedules and an actual ESS performance, and responsive to the variance being determined to be above a predetermined threshold, sending an update of the schedules to the ESS.
Abstract:
A system includes a shared data center having at least one data storage unit and at least one processing unit. The shared data center is configured to service one, two, or more industrial automation systems. For each of the one, two, or more industrial automation systems, the shared data center is configured to receive process-related data associated from at least one local device in at least one local system, analyze the process-related data from the local device, and provide instructions to at least one client device associated with the local system.
Abstract:
An energy control system (ECS) for controlling an energy storage system (ESS's) that includes energy storage devices(s) or an energy storage combination (ESDC's) including ≥1 of the energy storage devices and ≥1 of the energy storage combinations. A power conversion system is coupled to an output of the ESDC, and a transformer is coupled to an output of the power conversion system. The ECS includes an ECS server and an ESS adapter configured for providing an interface between ECS server and the ESS. The ECS server is configured for reading status data from the ESS and submitting schedules including selected charging and discharging times to the ESS, monitoring or displaying a variance between an expected performance of the ESS based on the schedules and an actual ESS performance, and responsive to the variance being determined to be above a predetermined threshold, sending an update of the schedules to the ESS.
Abstract:
A method includes parsing information associated with an industrial process in an industrial process control system to identify equipment data associated with the industrial process. The method also includes receiving a selection of equipment. The method further includes identifying one or more shapes associated with the selected equipment. In addition, the method includes automatically generating at least one process graphic containing the one or more shapes and the equipment data.
Abstract:
An internet of things (IoT) edge appliance is configured to perform a method that includes receiving a configuration signal to configure the IoT edge appliance to communicate with at least one of a first device on the cloud network or a second device on the industrial process control and automation system network. The method also includes configuring a communication link with a cloud network and an industrial process control and automation system network. The method further includes communicating data with the at least one of the first device on the cloud network or the second device on the industrial process control and automation system network.
Abstract:
A method includes identifying an envelope associated with a process variable in an industrial process control and automation system. The envelope is defined by an upper limit and a lower limit on the process variable. The method also includes generating a graphical display for presentation to an operator. The graphical display identifies a trend of a value of the process variable over time and the upper and lower limits of the envelope over time. The graphical display could also identify predicted upper and lower limits of the envelope a predicted target value of the process variable over a future time period. The graphical display could further identify when the value of the process variable falls outside the envelope.