Abstract:
A turbine blade includes an airfoil that has a tip region that extends from the leading edge toward the trailing edge, and the tip region is bounded by a wall that extends at a positive angle. The leading edge has a leading edge cooling circuit that is defined from the platform to a tip flag channel, and the leading edge cooling circuit is in fluid communication with the tip flag channel. The pressure side includes at least one tip dust hole defined through the wall proximate the pressure side, and the at least one tip dust hole has an inlet and an outlet. The airfoil has at least one rib defined on the wall that extends at a second angle, and the at least one rib merges with at least one flow scoop to direct the particles and a portion of the cooling fluid into the inlet.
Abstract:
A turbine component with shaped cooling pins is provided. The turbine component includes at least one cooling circuit defined within the turbine component, the at least one cooling circuit in fluid communication with a source of a cooling fluid. The turbine component includes at least one shaped cooling pin disposed in the at least one cooling circuit. The at least one shaped cooling pin has a first end and a second end extending along an axis. The first end has a first curved surface defined by a minor diameter and the second end has a second curved surface defined by a major diameter. The first curved surface is upstream in the cooling fluid and the minor diameter is less than the major diameter.
Abstract:
A turbine blade with an integral flow meter is provided. The turbine blade includes a trailing edge and a leading edge opposite the trailing edge. The turbine blade includes at least one cooling passage defined internally within the turbine blade, and the at least one cooling passage is in fluid communication with a source of cooling fluid via an inlet to receive a cooling fluid. The turbine blade also includes at least one flow meter formed within the turbine blade at the inlet that supplies the cooling fluid to the at least one cooling passage.
Abstract:
A cooling arrangement is provided for a gas turbine engine with a turbine section. The cooling arrangement includes a first conduit to receive cooling air that includes particles; a separator system coupled to the first conduit to receive the cooling air and configured to remove at least a portion of the particles to result in relatively clean cooling air and scavenge air including the portion of the particles; and a second conduit coupled to the separator system and configured to direct the relatively clean cooling air to the turbine section.
Abstract:
A turbine vane includes an airfoil that extends from an inner diameter to an outer diameter, and from a leading edge to a trailing edge. The turbine vane includes an inner platform coupled to the airfoil at the inner diameter. The turbine vane includes a cooling system defined in the airfoil including a first conduit in proximity to the leading edge to cool the leading edge and a second conduit to cool the trailing edge. The first conduit has an inlet at the outer diameter to receive a cooling fluid and an outlet portion that is defined at least partially through the inner platform. The first conduit includes a plurality of cooling features that extend from a first surface of the first conduit, and the first surface of the first conduit is opposite the leading edge.
Abstract:
An engine component includes a body having an internal surface and an external surface, the internal surface at least partially defining an internal cooling circuit. The component further includes a plurality of cooling holes formed in the body and extending between the internal cooling circuit and the external surface of the body. The plurality of cooling holes includes a first cooling hole with a metering portion with a constant cross-sectional area and a cross-sectional shape having a maximum height that is offset relative to a longitudinal centerline of the metering portion; and a diffuser portion extending from the metering portion to the external surface of the body.
Abstract:
An airfoil for a rotor blade in a gas turbine engine includes a first side wall and a second side wall joined to the first side wall at a leading edge and a trailing edge. The airfoil further includes a tip cap extending between the first and second side walls such that the tip cap and at least portions of the first and second side walls form a blade tip and an internal cooling system. The internal cooling system includes a leading edge cooling circuit, a central cooling circuit, and a trailing edge cooling circuit. Each of the internal passages within the leading edge cooling circuit, the central cooling circuit, and the trailing edge cooling circuit is bounded in the radial outward direction with a surface that has at least one escape hole or that is positively angled in the radial outward direction relative to a chordwise axis.
Abstract:
A turbine vane includes an airfoil that extends from an inner diameter to an outer diameter, and from a leading edge to a trailing edge. The turbine vane includes an inner platform coupled to the airfoil at the inner diameter. The turbine vane includes a cooling system defined in the airfoil including a first conduit in proximity to the leading edge to cool the leading edge and a second conduit to cool the trailing edge. The first conduit has an inlet at the outer diameter to receive a cooling fluid and an outlet portion that is defined at least partially through the inner platform. The first conduit includes a plurality of cooling features that extend between a first surface and a second surface of the first conduit, and the first surface of the first conduit is opposite the leading edge.
Abstract:
A cooling circuit to receive a cooling fluid includes at least one shaped cooling pin disposed in the cooling circuit. The at least one shaped cooling pin has a first end and a second end extending along an axis. The first end has a first curved surface defined by a minor diameter and the second end has a second curved surface defined by a major diameter. The first curved surface is to be upstream in the cooling fluid and the minor diameter is less than the major diameter.
Abstract:
Turbine wheels, turbine engines, and methods of forming the turbine wheels are provided herein. In an embodiment, a turbine wheel includes a rotor disk and a plurality of turbine blades. Each turbine blade is operatively connected to the rotor disk through a blade mount, which is bonded to the rotor disk. The blade mount and the rotor disk have a fore surface on a higher pressure side thereof and an aft surface on a lower pressure side thereof. The blade mount includes a blade attachment surface that extends between and connects the fore surface and the aft surface. The turbine blade extends from the blade attachment surface. A gap is defined between adjacent blade mounts. The gap separates the blade mounts and extends into the rotor disk. The gap includes a pocket that has a fore opening in the fore surface. A pocket seal is disposed in the pocket.