Abstract:
A propulsion and electric power generation system includes a dual-spool turbofan gas turbine engine and an electrical generator. The dual-spool turbofan gas turbine engine includes at least a low-pressure turbine coupled to a fan via a low-pressure spool. The low-pressure turbine is configured to generate mechanical power. The electrical generator is directly connected to the low-pressure spool and is disposed downstream of the low-pressure turbine. A first fraction of the mechanical power generated by the low-pressure turbine is controllably supplied to the fan for propulsive power generation (Pt). A second fraction of the mechanical power generated by the low-pressure turbine is controllably supplied to the electrical generator for electrical power generation (Pe). A ratio of Pe to Pt (Pe/Pt), during operation of the dual-spool turbofan gas turbine engine, controllably spans a range from less than about 0.06 to at least 0.18.
Abstract:
A propulsion and electric power generation system includes a gas turbine propulsion engine, an electrical generator, an aircraft power distribution system, a plurality of auxiliary fans, and a controller. The gas turbine propulsion engine includes at least a low-pressure turbine coupled to a fan via a low-pressure spool, and the low-pressure turbine is configured to generate mechanical power. The electrical generator is directly connected to the low-pressure spool and generates a total amount of electrical power (Pe). The aircraft power distribution system receives a first fraction (Pa) of the total amount of electrical power. The auxiliary fans receive a second fraction (Pf) of the total amount of electrical power. The controller is configured to control a ratio of Pf to Pa (Pf/Pa) such that the ratio spans a range from less than 0.6 to at least 0.9.
Abstract:
A turbine engine incorporating a fine particle separation means includes a radial compressor that rotates about a longitudinal axis, a radially-oriented diffuser located downstream and radially outward, with respect to the longitudinal axis, from the radial compressor, and a flow path positioned downstream and radially outward, with respect to the longitudinal axis, from the diffuser, wherein the flow path comprises an outer annular wall and an inner annular wall between which the compressed air flows, and wherein the flow path comprises an arc the redirects the compressed air from flowing in a substantially radial flow direction to a substantially axial flow direction. The turbine engine further includes an extraction slot in the outer annular wall that fluidly connects with a scavenge plenum, the scavenge plenum being positioned adjacent to and radially outward from the outer annular wall at a position downstream axially along the flow path from the arc.
Abstract:
A cooling arrangement is provided for a gas turbine engine with a turbine section. The cooling arrangement includes a first conduit to receive cooling air that includes particles; a separator system coupled to the first conduit to receive the cooling air and configured to remove at least a portion of the particles to result in relatively clean cooling air and scavenge air including the portion of the particles; and a second conduit coupled to the separator system and configured to direct the relatively clean cooling air to the turbine section.
Abstract:
A turbine engine incorporating a fine particle separation means includes a radial compressor that rotates about a longitudinal axis, a radially-oriented diffuser located downstream and radially outward, with respect to the longitudinal axis, from the radial compressor, and a flow path positioned downstream and radially outward, with respect to the longitudinal axis, from the diffuser, wherein the flow path comprises an outer annular wall and an inner annular wall between which the compressed air flows, and wherein the flow path comprises an arc the redirects the compressed air from flowing in a substantially radial flow direction to a substantially axial flow direction. The turbine engine further includes an extraction slot in the outer annular wall that fluidly connects with a scavenge plenum, the scavenge plenum being positioned adjacent to and radially outward from the outer annular wall at a position downstream axially along the flow path from the arc.
Abstract:
A cooling arrangement is provided for a gas turbine engine with a turbine section. The cooling arrangement includes a first conduit to receive cooling air that includes particles; a separator system coupled to the first conduit to receive the cooling air and configured to remove at least a portion of the particles to result in relatively clean cooling air and scavenge air including the portion of the particles; and a second conduit coupled to the separator system and configured to direct the relatively clean cooling air to the turbine section.
Abstract:
A propulsion and electric power generation system includes a gas turbine propulsion engine, an electrical generator, an aircraft power distribution system, a plurality of auxiliary fans, and a controller. The gas turbine propulsion engine includes at least a low-pressure turbine coupled to a fan via a low-pressure spool, and the low-pressure turbine is configured to generate mechanical power. The electrical generator is directly connected to the low-pressure spool and generates a total amount of electrical power (Pe). The aircraft power distribution system receives a first fraction (Pa) of the total amount of electrical power. The auxiliary fans receive a second fraction (Pf) of the total amount of electrical power. The controller is configured to control a ratio of Pf to Pa (Pf/Pa) such that the ratio spans a range from less than 0.6 to at least 0.9.