Abstract:
A thrust reverser system for a gas turbine engine includes a support structure, a transcowl, an actuator, and a hydraulic assist mechanism. The actuator is configured to supply an actuation force to the transcowl to thereby move the transcowl between the stowed and deployed positions. The hydraulic assist mechanism is coupled to the transcowl and is configured to react reverse thrust loads on the transcowl at least when the transcowl is translating between the stowed position and the deployed position.
Abstract:
A thrust reverser system for a gas turbine engine includes a support structure, a transcowl, a door, a main actuator, and an assist actuator. The transcowl is mounted on the support structure and is axially translatable between a stowed position and a deployed position. The door is pivotally coupled to the support structure and is rotatable between at least a first position and a second position when the transcowl translates between the stowed position and the deployed position, respectively. The main actuator is configured to supply an actuation force to the transcowl to thereby move the transcowl between the stowed and deployed positions. The assist actuator is coupled to the door, and is configured to supply an actuation assist force to the door and, upon rotation of the door to an intermediate position between the first position and the second position, to commence load sharing with the main actuator.
Abstract:
An aircraft thrust reverser actuation system includes a plurality of actuator assemblies that are each configured, upon receipt of a drive torque, to move to a position. The rotary hydraulic motor is coupled to each of the actuator assemblies and is configured, upon receipt of hydraulic fluid, to rotate and supply the drive torque to each of the actuator assemblies. The control valve is in fluid communication with the rotary hydraulic motor and is configured, upon receipt of electrical current, to move to a valve position based on the magnitude of the received electrical current, to thereby control the direction and flow of hydraulic fluid to the hydraulic motor. The valve control is configured, upon receipt of thrust reverser commands, to supply the electrical current to the control valve and selectively vary the magnitude of the electrical current based on the positions of the actuator assemblies.
Abstract:
A rope drive anchoring assembly includes a pulley, a rope, and a rope connector. The pulley is adapted to be rotationally mounted and has an inner surface, an outer surface, and a fastener opening extending between the inner and outer surfaces. The rope engages at least a portion of the outer surface of the pulley and is adapted to receive a drive torque, which causes the pulley to rotate. The rope connector couples the rope to the pulley, and includes a fastener, a threaded bolt, and a spring. The fastener extends through the fastener opening, and has a first end, a second end, an outer surface, and an opening through which the rope extends. The threaded bolt is threaded onto the fastener threads, and the spring is disposed between the threaded bolt and the inner surface of the pulley.
Abstract:
A thrust reverser control system includes a plurality of actuators, an electric motor, an electric brake, and a control. Each actuator is responsive to an actuator input torque to move between a stowed position and a deployed position. The electric motor is coupled to each of the actuators and is configured, upon being energized from a voltage source having a supply voltage magnitude, to supply the actuator input torque to the actuators and further configured to selectively generate regenerative current. The electric brake is coupled to be selectively supplied with the regenerative current and is configured, upon being supplied with the regenerative current, to supply a braking torque that slows movement of the actuators. The control is coupled to the electric brake and is configured, upon the supply voltage magnitude exceeding a predetermined value, to cause the regenerative current to be supplied to the electric brake.
Abstract:
A hydraulic lock for an actuator having a movable shaft includes a lock cylinder having a first end and a second end. A slot is defined through a perimeter of the lock cylinder adjacent to the second end, and a bore is defined through a portion of the lock cylinder at the second end to extend towards the first end. The hydraulic lock includes at least one pawl having a first pawl end and a second pawl end. The first pawl end is releasably coupled to a groove defined in the shaft, and the second pawl end is coupled to the slot. The pawl is movable relative to the slot between a first, locked position in which the first pawl end is coupled to the groove to inhibit movement of the shaft, and a second, unlocked position in which the first pawl end is released from the groove.
Abstract:
A self-snubbing hydraulic actuation system includes a hydraulic motor, a component actuator, a control valve, a valve actuator, and a variable resistance device. The hydraulic motor is configured, upon receipt of hydraulic fluid, to rotate and supply a drive torque. The component actuator is configured, upon receipt of drive torque from the motor, to translate to a position. The control valve is movable to a plurality of valve positions to thereby control hydraulic fluid flow rate to the hydraulic motor. The valve actuator is coupled to the control valve and is adapted to receive electrical current and to move the control valve to a valve position based on the magnitude of the received electrical current. The variable resistance device is configured, based on component actuator position, to selectively vary the magnitude of the electrical current received by the valve actuator.
Abstract:
An actuator includes an actuator housing, a ball screw, and an axial soft stop assembly. The ball screw extends through the actuator housing and has a first end and a second end. The ball screw is coupled to receive a drive force and is configured, upon receipt of the drive force, to selectively move in a retract direction and an extend direction. The axial soft stop assembly is disposed within the actuator housing. The axial soft stop assembly is configured to be selectively engaged by the ball screw and, upon being engaged thereby, to translate, with compliance, a predetermined distance in the extend direction, and to prevent further movement of the ball screw upon translating the predetermined distance.
Abstract:
An aircraft thrust reverser actuation system includes a plurality of actuator assemblies that are each configured, upon receipt of a drive torque, to move to a position. The rotary hydraulic motor is coupled to each of the actuator assemblies and is configured, upon receipt of hydraulic fluid, to rotate and supply the drive torque to each of the actuator assemblies. The control valve is in fluid communication with the rotary hydraulic motor and is configured, upon receipt of electrical current, to move to a valve position based on the magnitude of the received electrical current, to thereby control the direction and flow of hydraulic fluid to the hydraulic motor. The valve control is configured, upon receipt of thrust reverser commands, to supply the electrical current to the control valve and selectively vary the magnitude of the electrical current based on the positions of the actuator assemblies.
Abstract:
A rope drive anchoring assembly includes a pulley, a rope, and a rope connector. The pulley is adapted to be rotationally mounted and has an inner surface, an outer surface, and a fastener opening extending between the inner and outer surfaces. The rope engages at least a portion of the outer surface of the pulley and is adapted to receive a drive torque, which causes the pulley to rotate. The rope connector couples the rope to the pulley, and includes a fastener, a threaded bolt, and a spring. The fastener extends through the fastener opening, and has a first end, a second end, an outer surface, and an opening through which the rope extends. The threaded bolt is threaded onto the fastener threads, and the spring is disposed between the threaded bolt and the inner surface of the pulley.