Abstract:
Provided is a driving apparatus capable of effectively preventing impact at the stroke end in the hydraulic cylinder. The driving apparatus includes a hydraulic pump, a cylinder control valve, an operation member, a drive command input unit inputting a cylinder drive command corresponding to a cylinder operation applied to the operation member to the cylinder control valve, a cylinder stroke detection unit, a cylinder drive command restriction unit restricting the cylinder drive command in response to the cylinder stroke to stop a piston of a hydraulic cylinder before the stroke end.
Abstract:
A wheelchair lift with low energy consumption includes a platform assembly to receive a wheelchair. The wheelchair lift includes a hydraulic drive system to move the platform assembly between an entry level position and a ground level position. The wheelchair lift includes a fluid circuit being embodied to transport a hydraulic fluid from a tank using a pump driven by an electric motor to the hydraulic drive system to raise the platform assembly from the ground level position to the entry level position. The fluid circuit is further embodied to transport the hydraulic fluid from the hydraulic drive system via the pump to the tank, when lowering the platform assembly from the entry level position to the ground level position.
Abstract:
A hydraulic system for operating a rear gate of a baler implement includes a hydraulic cylinder having a housing that defines an interior, and a piston that is moveably disposed within the interior of the housing. The housing includes a first fluid port and a second fluid port, each disposed in fluid communication with a first fluid volume of the hydraulic cylinder. A flow rate control valve is moveable between a first position for directing fluid to or from the first fluid port at a first flow rate, and a second position for directing fluid to or from the second fluid port at a second flow rate. The second flow rate is different than the first flow rate.
Abstract:
In some applications, a piston of a hydraulic actuator may move at high speeds, and large undesired forces may be generated if the piston reaches an end-stop of the hydraulic actuator at a high speed. The undesired forces may, for example, cause mechanical damage in the hydraulic actuator. A controller may receive information indicative of the piston reaching a first position at a first threshold distance from the end-stop, and, in response, may modify a signal to a valve assembly controlling flow of hydraulic fluid to and from the hydraulic actuator. Further, the controller may receive information indicative of the piston reaching a second position at a second threshold distance closer to the end-stop of the hydraulic actuator, and, in response, the controller may further modify the signal to the valve assembly so as to apply a force on the piston in a away from the end-stop.
Abstract:
A hydraulic drive system (1) including a meter-in compensator (37) and a bleed-off compensator (42) comprises a plurality of sensors (64 to 68), a controller (62), and an outlet pressure switching valve (61). The controller (62) determines whether or not the state of a wheel loader (2) which is detected based on the signals output from the sensors (64 to 68) meets a predetermined steering limiting condition. When the controller (62) determines that the state of the wheel loader (2) meets the steering limiting condition, it outputs a command signal to the outlet pressure switching valve (61). The outlet pressure switching valve (61) reduces the flow rate of the hydraulic oil flowing to steering cylinders (18L, 18R), in response to the command signal in such a manner that the flow rate becomes lower than that corresponding to the operation amount of a handle of a steering device (35).
Abstract:
The invention provides a rotation control device capable of reducing a loss of a power of a hydraulic pump in a backward direction operation and also provides a construction machine including the same. The controller controls a capacity of the hydraulic pump such that, in a forward direction operation in which an operating direction detected by the operation sensor and a rotating direction detected by a rotation sensor coincide with each other, the capacity of the hydraulic pump is increased in accordance with an increase in the operation amount detected by an operation sensor, on the other hand, restricts the capacity of the hydraulic pump more in a backward direction operation, in which the operating direction detected by the operation sensor and the rotating direction detected by the rotation sensor are reverse to each other, than in the forward direction operation.
Abstract:
A hydraulic drive system (1) including a meter-in compensator (37) and a bleed-off compensator (42) comprises a plurality of sensors (64 to 68), a controller (62), and an outlet pressure switching valve (61) The controller (62) determines whether or not the state of a wheel loader (2) which is detected based on the signals output from the sensors (64 to 68) meets a predetermined steering limiting condition. When the controller (62) determines that the state of the wheel loader (2) meets the steering limiting condition, it outputs a command signal to the outlet pressure switching valve (61). The outlet pressure switching valve (61) reduces the flow rate of the hydraulic oil flowing to steering cylinders (18L, 18R), in response to the command signal in such a manner that the flow rate becomes lower than that corresponding to the operation amount of a handle of a steering device (35).
Abstract:
An aircraft door actuator, including: a pneumatic cylinder for the opening of the door including a chamber into which a pressurized gas is injected via a first port, means for supplying the chamber of the cylinder with pressurized gas, via a supply pipe and said first port, means for setting the chamber to atmospheric pressure when the piston is in the position for opening the door, so as to allow said door to be moved into the closing position, including: a pressurized gas exhaust pipe a gate-valve means for guiding the opening of the gate-valve via the pressurized fluid located in the chamber when the door is in the opening position, so as to open the exhaust pipe in order to set said chamber of the cylinder to atmospheric pressure in a rapid manner once the door is open.
Abstract:
The disclosed invention relates to a swing control system for construction machines and is useful in a construction equipment in which the shaking or jerking movement of the upper swing structure due to the moment of inertia thereof is controlled by a simple electrical hydraulic control system so that although the swing manipulation is abruptly and repeatedly performed during the excavation or dumping operation, an operator can control the soft swing start/stop of the upper swing structure in the swing operation of construction machine, thereby improving manipulability and work efficiency of the work apparatus.
Abstract:
A control mechanism includes two hydraulic cylinders, a valve connected to the cylinders, and an actuating unit for the valve; racks are joined to power output rods of the cylinders, facing each other, and engaging a gear secured on a rotary disk; the valve includes a body, and a rod made to stick out from the body at outward end by a spring; the rod can reduce an oil passage of the body after it is displaced further into the body, and the rod can block the oil passage substantially at an end of its displacement further into the body; the actuating unit is movable with one of the power rod, and has two sloping boards thereon such that the rod will be displaced further into the body when the actuating unit moves with the power rod, and when the sloping boards slide over the outward end of the rod of the valve.