Abstract:
A connector includes a first light transmission part and a second light transmission part, and when the connector is connected to an optical component, observing, by using the first light transmission part and the second light transmission part on an equipment room side, a detection light to identify the connector, and identifying an output port through which a user-side optical network unit (ONU) is connected to an equipment-room-side splitter.
Abstract:
A splitter includes an optical input section, N optical branch sections, and at least (N−1) optical filter structures. Each optical filter structure reflects an optical signal of one wavelength. The at least (N−1) optical filter structures include a special optical filter structure and at least (N−3) common optical filter structures, and a wavelength of an optical signal reflected by each of the common optical filter structures is a common wavelength. A wavelength of an optical signal reflected by a first/second special optical filter structure is a first/second special wavelength. At least (N−3) common wavelengths constitute an arithmetic sequence, a difference between the first special wavelength and a largest common wavelength is greater than a tolerance of the arithmetic sequence, and a difference between the second special wavelength and a smallest common wavelength is greater than the tolerance of the arithmetic sequence.
Abstract:
This application provides a method and an apparatus for establishing an optical cable connection. The method includes: receiving, by a network device, a service provisioning request message including user information from a terminal device; allocating, by the network device, an optical splitter port based on the user information; sending, by the network device, a service provisioning response message to the terminal device, where the service provisioning response message includes the user information and port information; receiving, by the network device, an optical cable installation complete indication message sent by the terminal device, where the optical cable installation complete indication message carries the port identifier, the user information, and an optical cable identifier, and the optical cable identifier is used to indicate an optical cable corresponding to the user information; and storing, by the network device, a correspondence between the optical cable identifier, the port identifier, and the user information.
Abstract:
The present invention provides an optical splitter and a system, including: an optical divider, a ribbon fiber, and tributary fibers, where the optical divider is configured to divide an input optical signal into at least two optical signals for output; one end of the ribbon fiber is connected to the optical divider, and the other end of the ribbon fiber is connected to the tributary fibers, where a grating array is disposed on the ribbon fiber; and the grating array includes at least two Bragg gratings, different Bragg gratings correspond to different tributary lines of the optical divider, and the number of Bragg gratings included in the grating array is the same as the number of optical signals output by the optical divider; which solves a problem that additional connection loss is increased because an existing splitter needs to be connected to each link fiber by using an optical connector.
Abstract:
A splitter includes an optical input section, N optical branch sections, and at least (N−1) optical filter structures. Each optical filter structure reflects an optical signal of one wavelength. The at least (N−1) optical filter structures include a special optical filter structure and at least (N−3) common optical filter structures, and a wavelength of an optical signal reflected by each of the common optical filter structures is a common wavelength. A wavelength of an optical signal reflected by a first/second special optical filter structure is a first/second special wavelength. At least (N−3) common wavelengths constitute an arithmetic sequence, a difference between the first special wavelength and a largest common wavelength is greater than a tolerance of the arithmetic sequence, and a difference between the second special wavelength and a smallest common wavelength is greater than the tolerance of the arithmetic sequence.
Abstract:
This application provides a port identification method, apparatus, and system, and belongs to the field of optical communications technologies. According to this application, a connection relationship between the ONT and the optical splitter and a connection relationship between the ONT and the port of the optical splitter can be accurately identified.
Abstract:
One example optical splitter chip includes a substrate. The substrate is configured with an input port, configured to receive first signal light, an uneven optical splitting unit, configured to split the first signal light into at least second signal light and third signal light, where optical power of the second signal light is different from optical power of the third signal light, a first output port, configured to output the second signal light, an even optical splitting unit group, including at least one even optical splitting unit, configured to split the third signal light into at least two channels of equal signal light, where optical power of the at least two channels of equal signal light is the same, and at least two second output ports, which are in a one-to-one correspondence with the at least two channels of equal signal light.
Abstract:
An optical fiber connector, comprising a main shaft, a connecting piece, and a lock cap. The main shaft comprises a head end and a tail end that is away from the head end. A through hole extending from the head end to the tail end is disposed in the main shaft. The connecting piece is fixedly connected to the head end and partially accommodated in the through hole. The lock cap includes a sealing portion and a connection portion that is connected to a side of the sealing portion. The sealing portion is rotationally connected to an outer side of the head end. The connection portion is located on a side that is of the head end and that is away from the tail end.
Abstract:
An optical fiber junction assembly and a sealing method thereof, and an optical fiber junction box, where in the optical fiber junction assembly, a first housing has first mating surface and an accommodating cavity, a first welding bump is disposed on the first mating surface, and is disposed around an opening of the accommodating cavity, a second welding bump is disposed on the second mating surface, the first welding bump and the second welding bump are configured to form colloid after being heated and melted, and connect and seal the first mating surface and the second mating surface, and an overflow groove is disposed on at least one of the first mating surface and the second mating surface, and is configured to accommodate the colloid.
Abstract:
An optical fiber connector, comprising a main shaft, a connecting piece, and a lock cap. The main shaft comprises a head end and a tail end that is away from the head end. A through hole extending from the head end to the tail end is disposed in the main shaft. The connecting piece is fixedly connected to the head end and partially accommodated in the through hole. The lock cap includes a sealing portion and a connection portion that is connected to a side of the sealing portion. The sealing portion is rotationally connected to an outer side of the head end. The connection portion is located on a side that is of the head end and that is away from the tail end.