Abstract:
This application provides a port identification method, apparatus, and system, and belongs to the field of optical communications technologies. According to this application, a connection relationship between the ONT and the optical splitter and a connection relationship between the ONT and the port of the optical splitter can be accurately identified.
Abstract:
This application provides a method and an apparatus for establishing an optical cable connection. The method includes: receiving, by a network device, a service provisioning request message including user information from a terminal device; allocating, by the network device, an optical splitter port based on the user information; sending, by the network device, a service provisioning response message to the terminal device, where the service provisioning response message includes the user information and port information; receiving, by the network device, an optical cable installation complete indication message sent by the terminal device, where the optical cable installation complete indication message carries the port identifier, the user information, and an optical cable identifier, and the optical cable identifier is used to indicate an optical cable corresponding to the user information; and storing, by the network device, a correspondence between the optical cable identifier, the port identifier, and the user information.
Abstract:
An optical fiber junction assembly and a sealing method thereof, and an optical fiber junction box, where in the optical fiber junction assembly, a first housing has first mating surface and an accommodating cavity, a first welding bump is disposed on the first mating surface, and is disposed around an opening of the accommodating cavity, a second welding bump is disposed on the second mating surface, the first welding bump and the second welding bump are configured to form colloid after being heated and melted, and connect and seal the first mating surface and the second mating surface, and an overflow groove is disposed on at least one of the first mating surface and the second mating surface, and is configured to accommodate the colloid.
Abstract:
Embodiments of the present invention provide an optical branching assembly, a passive optical network, and an optical transmission method, which relate to the field of communications and are used to implement a functional diversity of the optical branching assembly. The optical branching assembly includes: a substrate and an optical power distribution area disposed on a surface of the substrate, where the optical power distribution area is coupled to a first optical waveguide, multiple second optical waveguides, and at least one third optical waveguide, and is used to distribute optical power of an optical signal, transmitted through the first optical waveguide, to each of the second optical waveguides and the at least one third optical waveguide; and the third optical waveguide is coupled to the first optical waveguide, where a reflective material is disposed on the third optical waveguide.
Abstract:
Embodiments of the present invention disclose a method, an apparatus, and a system for detecting an optical network. The method comprises: receiving, by a management device, a reflection peak power reported by a testing device, where the reflection peak power is a reflection peak power of an optical splitter that is obtained by the testing device according to a reflected optical signal, the reflected optical signal is an optical signal obtained by reflecting, by the optical splitter, a testing optical signal that is sent by the testing device and is transmitted to the optical splitter through an optical cable, and the optical splitter reflects the testing optical signal by using a reflective film disposed on an end surface of one optical output port. a detector does not need to carry a testing device to a site, to perform detection, efficiency of detecting performance of an optical network is improved.
Abstract:
A front housing of the optical-electrical composite connector is axially provided with a through groove passing through the front housing on the front housing, and an inner wall of the through groove is provided with a first groove. A rear housing includes a main body portion and a clamping portion connected to one end of the main body portion. An outer surface of the clamping portion is axially provided with a second groove, the clamping portion is located in the through groove, and the first groove is butted with the second groove to form an accommodation space. One end that is of the through groove and that is away from the main body portion is an optical port. The font housing is provided with an opening connecting to the accommodation space and the outside. The conductive terminal is accommodated in the opening, and the conductive terminal forms an electrical port.
Abstract:
One example optical splitter chip includes a substrate, where the substrate is configured with an input port, configured to receive first signal light, an uneven optical splitting unit, configured to split the first signal light into at least second signal light and third signal light, where optical power of the second signal light is different from optical power of the third signal light, a first output port, configured to output the second signal light, an even optical splitting unit group, including at least one even optical splitting unit, configured to split the third signal light into at least two channels of equal signal light, where optical power of the at least two channels of equal signal light is the same, and at least two second output ports, which are in a one-to-one correspondence with the at least two channels of equal signal light.
Abstract:
A topology processing method, apparatus, and system are provided. The topology processing method includes: obtaining, by a topology processing apparatus, a first onsite image collected from an optical distribution network ODN, where the first onsite image includes at least an imaging of a first port of a first ODN device, the first port is connected to a first cable, a first identification area used to identify the first cable is disposed on the first cable, and the first onsite image further includes at least an imaging of the first identification area on the first cable; and identifying, by the topology processing apparatus, the first cable based on the first identification area on the first onsite image, and identifying, based on the first onsite image, the first port connected to the first cable; and generating a first correspondence between the first ODN device, the first port, and the first cable.
Abstract:
Embodiments of the present invention provide an optical branching assembly, a passive optical network, and an optical transmission method, which relate to the field of communications and are used to implement a functional diversity of the optical branching assembly. The optical branching assembly includes: a substrate and an optical power distribution area disposed on a surface of the substrate, where the optical power distribution area is coupled to a first optical waveguide, multiple second optical waveguides, and at least one third optical waveguide, and is used to distribute optical power of an optical signal, transmitted through the first optical waveguide, to each of the second optical waveguides and the at least one third optical waveguide; and the third optical waveguide is coupled to the first optical waveguide, where a reflective material is disposed on the third optical waveguide.
Abstract:
A front housing of the optical-electrical composite connector is axially provided with a through groove passing through the front housing on the front housing, and an inner wall of the through groove is provided with a first groove. A rear housing includes a main body portion and a clamping portion connected to one end of the main body portion. An outer surface of the clamping portion is axially provided with a second groove, the clamping portion is located in the through groove, and the first groove is butted with the second groove to form an accommodation space. One end that is of the through groove and that is away from the main body portion is an optical port. The font housing is provided with an opening connecting to the accommodation space and the outside. The conductive terminal is accommodated in the opening, and the conductive terminal forms an electrical port.