Abstract:
Embodiments of the present invention provide a motion prediction or compensation method during a video coding and decoding process. A motion prediction or compensation method provided in the embodiments of the present invention includes: acquiring a candidate motion vector set; conducting a refined search for an optimal motion vector based on information of the candidate motion vector set; and performing motion prediction or compensation by using the motion vector acquired by the refined search. This improves coding performance and meanwhile maintains reasonable complexity.
Abstract:
A method for determining experience quality of virtual reality (VR) multimedia includes, in a process of playing VR multimedia, obtaining a first sensory parameter, a second sensory parameter, and a third sensory parameter of the VR multimedia, where the first sensory parameter, the second sensory parameter, and the third sensory parameter are obtained by performing sampling separately according to at least two same perceptual dimensions, and are respectively parameters that affect fidelity experience, enjoyment experience, and interaction experience, and determining a mean opinion score (MOS) of the VR multimedia based on the first sensory parameter, the second sensory parameter, and the third sensory parameter of the VR multimedia. Because the third sensory parameter is a parameter that affects the interaction experience, an interaction feature of the VR multimedia is considered.
Abstract:
A method and device for generating a predicted value of image that are mostly used to generate a predicted value of a current block during image encoding or decoding. The method includes: determining a searching scope, wherein multiple motion vectors are included in the searching scope; performing up-sampling interpolations on first reference blocks, corresponding to the motion vector in the searching scope, in a reference image of the current block by using a first filter to obtain up-sampled first reference blocks; by using the up-sampled first reference blocks, obtaining at least one candidate motion vector corresponding to the current block; performing up-sampling interpolations on second reference blocks, corresponding to the at least one candidate motion vector, in the reference image of the current block by using a second filter to obtain up-sampled second reference blocks; combining the up-sampled second reference blocks to obtain a predicted value of the current block.
Abstract:
A method and a device for coding and decoding images are disclosed. The method for coding images includes: determining a second length according to a direction of a division line, a scale value, and a position parameter value; determining a division mode of the image block according to the direction of the division line, a first length, the second length, and the scale value; coding the image block according to the division mode of the image block; and coding a direction parameter value, the scale value, and the position parameter value. With the technical solution provided in the embodiments of the present invention, the determining of the division mode of the image block on the image coder is simplified.
Abstract:
Image encoding and decoding methods and related devices are provided. An image encoding and decoding method includes: for a sub-image block obtained by partitioning an image block, determining at least two position parameters, in which the at least two position parameters include a first position parameter and a second position parameter, the first position parameter identifies whether the sub-image block is a rectangle or not a rectangle, and the second position parameter identifies endpoint information of the sub-image block; determining an encoding sequence of the first position parameter and the second position parameter according to a partition manner of the image block; and encoding the at least two position parameters according to the determined encoding sequence.
Abstract:
A method and device for generating a predicted value of image that are mostly used to generate a predicted value of a current block during image encoding or decoding. The method includes: determining a searching scope, wherein multiple motion vectors are included in the searching scope; performing up-sampling interpolations on first reference blocks, corresponding to the motion vector in the searching scope, in a reference image of the current block by using a first filter to obtain up-sampled first reference blocks; by using the up-sampled first reference blocks, obtaining at least one candidate motion vector corresponding to the current block; performing up-sampling interpolations on second reference blocks, corresponding to the at least one candidate motion vector, in the reference image of the current block by using a second filter to obtain up-sampled second reference blocks; combining the up-sampled second reference blocks to obtain a predicted value of the current block.
Abstract:
A method and device for generating a predicted value of image to generate a predicted value of a current block during image encoding or decoding is disclosed, where the method includes determining a searching scope, wherein a plurality of motion vectors are included in the searching scope, performing up-sampling interpolations on first reference blocks corresponding to the motion vector in the searching scope, in a reference image of the current block using a first filter to obtain up-sampled first reference blocks, obtaining, using the up-sampled first reference blocks, at least one candidate motion vector corresponding to the current block, performing up-sampling interpolations on second reference blocks, corresponding to the at least one candidate motion vector, in the reference image of the current block using a second filter to obtain up-sampled second reference blocks, combining the up-sampled second reference blocks to obtain a predicted value of the current block.
Abstract:
A method and device for generating a predicted value of image that are mostly used to generate a predicted value of a current block during image encoding or decoding. The method includes: determining a searching scope, wherein multiple motion vectors are included in the searching scope; performing up-sampling interpolations on first reference blocks, corresponding to the motion vector in the searching scope, in a reference image of the current block by using a first filter to obtain up-sampled first reference blocks; by using the up-sampled first reference blocks, obtaining at least one candidate motion vector corresponding to the current block; performing up-sampling interpolations on second reference blocks, corresponding to the at least one candidate motion vector, in the reference image of the current block by using a second filter to obtain up-sampled second reference blocks; combining the up-sampled second reference blocks to obtain a predicted value of the current block.
Abstract:
Image encoding and decoding methods and related devices are provided. An image encoding and decoding method includes: for a sub-image block obtained by partitioning an image block, determining at least two position parameters, in which the at least two position parameters include a first position parameter and a second position parameter, the first position parameter identifies whether the sub-image block is a rectangle or not a rectangle, and the second position parameter identifies endpoint information of the sub-image block; determining an encoding sequence of the first position parameter and the second position parameter according to a partition manner of the image block; and encoding the at least two position parameters according to the determined encoding sequence.
Abstract:
Image encoding and decoding methods and related devices are provided. An image encoding and decoding method includes: for a sub-image block obtained by partitioning an image block, determining at least two position parameters, in which the at least two position parameters include a first position parameter and a second position parameter, the first position parameter identifies whether the sub-image block is a rectangle or not a rectangle, and the second position parameter identifies endpoint information of the sub-image block; determining an encoding sequence of the first position parameter and the second position parameter according to a partition manner of the image block; and encoding the at least two position parameters according to the determined encoding sequence.