Abstract:
The present invention relates to the mobile communications field, and in particular, to a synchronization signal sending method. A network device obtains a first signal after performing discrete Fourier transform DFT and orthogonal frequency division multiplexing OFDM modulation, or OFDM modulation on a ZC sequence whose root index is 1; the network device obtains a second signal after performing DFT and OFDM modulation, or OFDM modulation on a conjugate sequence of the ZC sequence whose root index is 1; the network device generates a synchronization signal, where the synchronization signal includes the first signal and the second signal; and the network device sends the synchronization signal to a terminal device. By using this method, when there is a relatively large frequency offset between the terminal device and the network device, an M2M service requirement can still be met.
Abstract:
Embodiments of the present invention provide a data sending and receiving method and device. The method includes: receiving a threshold; if a data volume of a packet to be sent is less than the threshold, sending the packet in a first data transmission manner; and if a data volume of the packet is greater than or equal to the threshold, sending the packet in a second data transmission manner. By adopting the technical solution of the present invention, a resource waste caused by transmitting small data in a data transmission manner used for transmitting a large packet in the prior art can be reduced, transmission efficiency of small data can be improved, and a transmission delay can be reduced.
Abstract:
Embodiments of the present invention disclose a broadcast information sending method, a broadcast information receiving method, a device, and a system, relate to the communications field, and are used to reduce system overheads, and improve coverage performance. The method provided by the embodiments of the present invention includes: sending, by a network device on a physical broadcast channel PBCH, PBCH information to user equipment UE, and sending, by the network device, the PBCH information in a specific radio frame in each period T of the PBCH, where the PBCH information only includes information about a system frame number SFN, and the period T is greater than one radio frame.
Abstract:
Embodiments of the present invention disclose a signal sending method and apparatus and a signal receiving method and apparatus. The signal sending method includes: generating, by a network device, a first signal, where the first signal includes at least one sequence pair, each of the at least one sequence pair includes two sequences, and an element value of one sequence of the two sequences is a value obtained by calculating, according to a first calculation rule, an element value of the other sequence of the two sequences and an element value of a first sequence corresponding to the other sequence, where each sequence in the at least one sequence pair and the first sequence are complex sequences with lengths greater than 1; and sending, by the network device, the first signal to a terminal device.
Abstract:
The signal sending method includes: generating, by a network device, a first indication signal, where the first indication signal is used to indicate that a terminal device is not paged and/or no system message changes, the first indication signal corresponds to a first international mobile subscriber identity IMSI set, and a quantity of IMSIs in the first IMSI set is less than or equal to a quantity of IMSIs corresponding to one paging occasion PO; and sending, by the network device, the first indication signal to a first terminal device, where the first terminal device is a terminal device corresponding to any IMSI in the first IMSI set.
Abstract:
An embodiment of the present invention discloses a signal sending method, a signal receiving method, a terminal device, a base station, and a system, to ensure that a signal has a sufficiently large capacity when a PAPR is low, and reduce power consumption of the terminal device. The method in embodiments of the present invention includes: generating, by the terminal device, a first signal; performing, by the terminal device, code division processing on the first signal using a target code division sequence selected from a code division sequence set, to generate a second signal, where any two code division sequences in the code division sequence set meet orthogonality and shift orthogonality; and sending, by the terminal device, the second signal to the base station at a corresponding time-frequency resource location.
Abstract:
The present disclosure discloses a method for transmitting downlink feedback information, a base station, and a terminal device, so as to ensure that the base station correctly receives the downlink feedback information sent by the terminal device, thereby effectively improving a transmission success rate of the downlink feedback information. In embodiments of the present disclosure, the method includes: sending, by the base station, indication information to the terminal device, where the indication information is used to indicate a target time-frequency resource location, the target time-frequency resource location is a time-frequency resource location at which the terminal device sends the downlink feedback information, and the downlink feedback information is used to feed back a reception status of downlink data that should be received by the terminal device; and receiving, by the base station, the downlink feedback information sent by the terminal device.
Abstract:
A communication method, a base station, user equipment, and a system are provided. The method includes: receiving uplink data that is sent by the user equipment in a specified multiple-access manner on a time-frequency resource corresponding to the specified multiple-access manner; and sending downlink data to the user equipment in a corresponding multiple-access manner on a time-frequency resource corresponding to the corresponding multiple-access manner, where the corresponding multiple-access manner is a multiple-access manner that is obtained by searching a at least two multiple-access manners according to a prestored correspondence and that is associated with the specified multiple-access manner. In this way, a problem that because one multiple-access manner is used in a same communications system, requirements of different user equipments cannot be met at the same time is resolved.
Abstract:
Embodiments of the present invention provide a wireless communications method, user equipment, a base station and a system, and relate to the field of wireless communications. The method includes: acquiring a frequency domain spreading factor, a symbol-level spreading factor and a transmission time interval-level spreading factor; and performing frequency domain spreading, symbol-level spreading and transmission time interval-level spreading on first to-be-sent information respectively according to the acquired spreading factors and sending first spread information; or, despreading, according to the acquired spreading factors, second spread information sent by a base station.
Abstract:
A communication method, a base station, user equipment, and a system are provided. The method includes: receiving uplink data that is sent by the user equipment in a specified multiple-access manner on a time-frequency resource corresponding to the specified multiple-access manner; and sending downlink data to the user equipment in a corresponding multiple-access manner on a time-frequency resource corresponding to the corresponding multiple-access manner, where the corresponding multiple-access manner is a multiple-access manner that is obtained by searching a at least two multiple-access manners according to a prestored correspondence and that is associated with the specified multiple-access manner. In this way, a problem that because one multiple-access manner is used in a same communications system, requirements of different user equipments cannot be met at the same time is resolved.