Abstract:
The cooling systems and methods of the present disclosure relate to cooling electronic equipment in data centers or any other applications that have high heat rejection temperature and high sensible heat ratio.
Abstract:
An air flow distribution system for cooling server racks includes at least one server rack partially defining a hot aisle and a cold aisle, a first air foil disposed above the server rack, and a second air foil disposed above the first air foil. The first air foil and the second air foil are configured to receive air from the hot aisle, and to form turbulent wake patterns in the cold aisle partially defined by the server rack. The air flow distribution system may include a convex ceiling member above the second air foil. A corresponding method includes causing air to be directed between a first air foil disposed above a server rack and a second air foil disposed above the first air foil to form turbulent wake patterns in the cold aisle. An electrical enclosure assembly includes a receptacle and a cover member configured as an air foil.
Abstract:
A cooling assembly for cooling server racks includes a server rack enclosure sub-assembly that includes at least one panel member defining a volume for receiving one or more server racks having a front portion and a rear portion, at least one of the panel members is a rear panel member; at least one frame member defines an opening for receiving the rear portion of the server racks to form a hot space between the rear panel member and the combination of the frame member and the rear portion of the server racks; a cooling sub-assembly disposed in thermal communication with the hot space to cool at least one server supported in the server rack and including a chassis receiving at least one heat exchange member for exchanging heat between a refrigerant fluid flowing through the heat exchange member and fluid flowing through the hot space heated by the server.
Abstract:
An air flow distribution system for cooling server racks includes at least one server rack partially defining a hot aisle and a cold aisle, a first air foil disposed above the server rack, and a second air foil disposed above the first air foil. The first air foil and the second air foil are configured to receive air from the hot aisle, and to form turbulent wake patterns in the cold aisle partially defined by the server rack. The air flow distribution system may include a convex ceiling member above the second air foil. A corresponding method includes causing air to be directed between a first air foil disposed above a server rack and a second air foil disposed above the first air foil to form turbulent wake patterns in the cold aisle. An electrical enclosure assembly includes a receptacle and a cover member configured as an air foil.
Abstract:
A space-saving, high-density modular data pod system and an energy-efficient cooling system are disclosed. The modular data pod system includes a central free-cooling system and a plurality of modular data pods, each of which includes a heat exchange assembly coupled to the central free-cooling system, and a distributed mechanical cooling system coupled to the heat exchange assembly. The modular data pods include a data enclosure having at least five walls arranged in the shape of a polygon, a plurality of computer racks arranged in a circular or U-shaped pattern, and a cover to create hot and cold aisles, and an air circulator configured to continuously circulate air between the hot and cold aisles. Each modular data pod also includes an auxiliary enclosure containing a common fluid and electrical circuit section that is configured to connect to adjacent common fluid and electrical circuit sections to form a common fluid and electrical circuit that connects to the central free-cooling system. The auxiliary enclosure contains at least a portion of the distributed mechanical cooling system, which is configured to trim the cooling performed by the central free-cooling system.
Abstract:
An air flow distribution system for cooling server racks includes at least one server rack partially defining a hot aisle and a cold aisle, a first air foil disposed above the server rack, and a second air foil disposed above the first air foil. The first air foil and the second air foil are configured to receive air from the hot aisle, and to form turbulent wake patterns in the cold aisle partially defined by the server rack. The air flow distribution system may include a convex ceiling member above the second air foil. A corresponding method includes causing air to be directed between a first air foil disposed above a server rack and a second air foil disposed above the first air foil to form turbulent wake patterns in the cold aisle. An electrical enclosure assembly includes a receptacle and a cover member configured as an air foil.
Abstract:
The cooling systems and methods of the present disclosure relate to cooling electronic equipment in data centers or any other applications that have high heat rejection temperature and high sensible heat ratio.
Abstract:
An air flow distribution system for cooling server racks includes at least one server rack partially defining a hot aisle and a cold aisle, a first air foil disposed above the server rack, and a second air foil disposed above the first air foil. The first air foil and the second air foil are configured to receive air from the hot aisle, and to form turbulent wake patterns in the cold aisle partially defined by the server rack. The air flow distribution system may include a convex ceiling member above the second air foil. A corresponding method includes causing air to be directed between a first air foil disposed above a server rack and a second air foil disposed above the first air foil to form turbulent wake patterns in the cold aisle. An electrical enclosure assembly includes a receptacle and a cover member configured as an air foil.
Abstract:
A cooling assembly for cooling server racks includes a server rack enclosure sub-assembly that includes at least one panel member defining a volume for receiving one or more server racks having a front portion and a rear portion, at least one of the panel members is a rear panel member; at least one frame member defines an opening for receiving the rear portion of the server racks to form a hot space between the rear panel member and the combination of the frame member and the rear portion of the server racks; a cooling sub-assembly disposed in thermal communication with the hot space to cool at least one server supported in the server rack and including a chassis receiving at least one heat exchange member for exchanging heat between a refrigerant fluid flowing through the heat exchange member and fluid flowing through the hot space heated by the server.
Abstract:
Cooling systems and methods use first and second evaporators and first and second liquid refrigerant distribution units to increase the efficiency of the cooling systems and methods. The first evaporator is in thermal communication with an air intake flow to a heat load, and the first liquid refrigerant distribution unit is in thermal communication with the first evaporator. The second evaporator is disposed in series with the first evaporator in the air intake flow and is in thermal communication with the air intake flow, and the second liquid refrigerant distribution unit is in thermal communication with the second evaporator. A trim compression cycle of the second liquid refrigerant distribution unit is configured to further cool the air intake flow through the second evaporator when the temperature of the first fluid flowing out of a main compressor of the second liquid refrigerant distribution unit exceeds a predetermined threshold temperature.