Abstract:
Methods and apparatus for changing cell range coverage are disclosed. A wireless transmit/receive unit (WTRU) may include circuitry configured to transmit subframes of radio frames using a physical uplink shared channel (PUSCH), where the subframes are divided into first and second sets. The circuitry may include a first power control loop utilized for the first set of subframes and a second power control loop utilized for the second set of subframes. The first power control loop may set transmission power levels for transmission over the PUSCH for the first set of subframes, and the second power control loop may set transmission power levels for transmission over the PUSCH for the second set of subframes. The circuitry may be configured with a first physical uplink control channel (PUCCH) for a first eNodeB and a second PUCCH for a second eNodeB to simultaneously communicate with the first and the second eNodeBs.
Abstract:
Methods and apparatus for changing cell range coverage are disclosed. A wireless transmit/receive unit (WTRU) may include circuitry configured to transmit subframes of radio frames using a physical uplink shared channel (PUSCH), where the subframes are divided into first and second sets. The circuitry may include a first power control loop utilized for the first set of subframes and a second power control loop utilized for the second set of subframes. The first power control loop may set transmission power levels for transmission over the PUSCH for the first set of subframes, and the second power control loop may set transmission power levels for transmission over the PUSCH for the second set of subframes. The circuitry may be configured with a first physical uplink control channel (PUCCH) for a first eNodeB and a second PUCCH for a second eNodeB to simultaneously communicate with the first and the second eNodeBs.
Abstract:
Methods and apparatus for changing cell range coverage are disclosed. A wireless transmit/receive unit (WTRU) may include circuitry configured to transmit subframes of radio frames using a physical uplink shared channel (PUSCH), where the subframes are divided into first and second sets. The circuity may include a first power control loop utilized for the first set of subframes and a second power control loop utilized for the second set of subframes. The first power control loop may set transmission power levels for transmission over the PUSCH for the first set of subframes, and the second power control loop may set transmission power levels for transmission over the PUSCH for the second set of subframes. The circuitry may be configured with a first physical uplink control channel (PUCCH) for a first eNodeB and a second PUCCH for a second eNodeB to simultaneously communicate with the first and the second eNodeBs.
Abstract:
Methods and apparatus for changing cell range coverage are disclosed. A wireless transmit/receive unit (WTRU) may include circuitry configured to transmit subframes of radio frames using a physical uplink shared channel (PUSCH), where the subframes are divided into first and second sets. The circuity may include a first power control loop utilized for the first set of subframes and a second power control loop utilized for the second set of subframes. The first power control loop may set transmission power levels for transmission over the PUSCH for the first set of subframes, and the second power control loop may set transmission power levels for transmission over the PUSCH for the second set of subframes. The circuitry may be configured with a first physical uplink control channel (PUCCH) for a first eNodeB and a second PUCCH for a second eNodeB to simultaneously communicate with the first and the second eNodeBs.
Abstract:
A method and apparatus are described. A wireless transmit/receive unit (WTRU) includes circuitry that determines transmission power levels associated with physical uplink shared channel (PUSCH) transmissions over a plurality of uplink component carriers. On a condition that maximum power scaling is required, the circuitry prioritizes providing power to a physical uplink control channel (PUCCH) over providing power to a physical uplink shared channel (PUSCH) having uplink control information (UCI) and prioritize providing power to the PUCCH and PUSCH having UCI over a PUSCH not having UCI. The circuitry transmits the PUCCH, the PUSCH having UCI or at least one PUSCH not having UCI over the plurality of uplink component carriers.
Abstract:
Methods and apparatus for changing cell range coverage are disclosed. A wireless transmit/receive unit (WTRU) may include circuitry configured to transmit subframes of radio frames using a physical uplink shared channel (PUSCH), where the subframes are divided into first and second sets. The circuitry may include a first power control loop utilized for the first set of subframes and a second power control loop utilized for the second set of subframes. The first power control loop may set transmission power levels for transmission over the PUSCH for the first set of subframes, and the second power control loop may set transmission power levels for transmission over the PUSCH for the second set of subframes. The circuitry may be configured with a first physical uplink control channel (PUCCH) for a first eNodeB and a second PUCCH for a second eNodeB to simultaneously communicate with the first and the second eNodeBs.
Abstract:
A wireless transmit/receive unit (WTRU) receives first timing advances and first power control commands from a first eNodeB and second timing advances and second power control commands from a second eNodeB and transmits, to the first eNodeB, a first physical uplink control channel using a first uplink component carrier. The first physical uplink control channel has a first timing adjusted by the first timing advances but not by the second timing advances and a first power level adjusted by the first power control commands but not by the second power control commands. The WTRU transmits a second physical uplink control channel using a second uplink component carrier. The second physical uplink control channel has a second timing adjusted by the second timing advances but not by the first timing advances and a second power level adjusted by the second power control commands but not by the first power control commands.
Abstract:
Methods and apparatus for changing cell range coverage are disclosed. A wireless transmit/receive unit (WTRU) may include circuitry configured to transmit subframes of radio frames using a physical uplink shared channel (PUSCH), where the subframes are divided into first and second sets. The circuitry may include a first power control loop utilized for the first set of subframes and a second power control loop utilized for the second set of subframes. The first power control loop may set transmission power levels for transmission over the PUSCH for the first set of subframes, and the second power control loop may set transmission power levels for transmission over the PUSCH for the second set of subframes. The circuitry may be configured with a first physical uplink control channel (PUCCH) for a first eNodeB and a second PUCCH for a second eNodeB to simultaneously communicate with the first and the second eNodeBs.
Abstract:
Methods and apparatus for millimeter wave (mmW) beam acquisition are disclosed. An apparatus includes a transmitter configured to transmit millimeter wave (mmW) WTRU (mmW WTRU) information over a cellular system to a base station a receiver and a processor. The receiver receives a list of candidate mmW base stations (mB) including mmW acquisition start timing information from the base station, and the processor calculates correlation values around the received mmW acquisition start timing information for the mBs in the list.
Abstract:
A wireless transmit/receive unit (WTRU) receives first timing advances and first power control commands from a first eNodeB and second timing advances and second power control commands from a second eNodeB and transmits, to the first eNodeB, a first physical uplink control channel using a first uplink component carrier. The first physical uplink control channel has a first timing adjusted by the first timing advances but not by the second timing advances and a first power level adjusted by the first power control commands but not by the second power control commands. The WTRU transmits a second physical uplink control channel using a second uplink component carrier. The second physical uplink control channel has a second timing adjusted by the second timing advances but not by the first timing advances and a second power level adjusted by the second power control commands but not by the first power control commands.