Abstract:
A method and apparatus for transmitting using beam are disclosed. A wireless transmit/receive unit (WTRU) may transmit a first physical random access channel (PRACH) preamble to a base station using a first beam at a first power level. The WTRU may receive an indication that the first PRACH preamble was received by the base station. If the indication was received, the WTRU may transmit data. If the indication was not received, the WTRU may select the first beam or a second beam to use for a second PRACH preamble. Further, the first and second beams may be different beams. If the first beam is selected, the WTRU may increase a transmission power level of the second PRACH preamble by a first power ramp step. If the second beam is selected, the WTRU may not increase the transmission power level of the second PRACH preamble by the first power ramp step.
Abstract:
Feedback information for multiple serving cells are transmitted on high speed dedicated physical control channel (HS-DPCCH). A slot format for transmitting feedback information is determined based on the number of configured secondary serving cells and whether multiple input multiple-output (MIMO) is configured in the serving cells. Spreading factor is reduced to 128 when two secondary serving cells are configured and MIMO is configured in at least one of the two configured secondary serving cells, or when three secondary serving cells are configured. The serving cells are grouped into feedback groups, each feedback group having one or more serving cells. Channel coding may be applied to feedback information for the feedback groups. The resulting encoded feedback information for the feedback groups is concatenated to form composite feedback information.
Abstract:
A method for dynamically controlling the transmit power of transmission streams transmitted via multiple antennas is disclosed. A transmit power level for multiple streams is determined based on a first reference channel. The difference of signal to interface ratios (SIRs) between two reference channels may represent a power offset. The power offset may be used to determine gain factors used to transmit data channels on the secondary stream with reference to the gain factor of the first reference channel. The power offset may be used to determine other parameters, such a serving grant or transport block sizes of channels carried on the secondary stream. The power offset may allow transmission parameters of channels on the secondary stream to be determined based on the transmit power level of the primary stream and a gain factor for a reference channel transmitted via the primary stream.
Abstract:
A method and an apparatus for transmitting pilots on multiple antennas are disclosed. A wireless transmit/receive unit (WTRU) may transmit a primary dedicated physical control channel (DPCCH) and at least one secondary DPCCH via multiple antennas using different channelization codes. When a required transmit power exceeds a maximum allowed transmit power of the WTRU, power scaling may be applied equally to the primary DPCCH and the secondary DPCCH, such that a power ratio between the primary DPCCH and the secondary DPCCH remains the same before scaling as after scaling. The secondary DPCCH may include a same number of pilot bits as the primary DPCCH both in a normal mode and in a compressed mode, respectively. The same total pilot energy ratio may be maintained between the primary DPCCH and the secondary DPCCH both in a normal mode and in a compressed mode, respectively.
Abstract:
A method for dynamically controlling the transmit power of transmission streams transmitted via multiple antennas is disclosed. A transmit power level for multiple streams is determined based on a first reference channel. The difference of signal to interface ratios (SIRs) between two reference channels may represent a power offset. The power offset may be used to determine gain factors used to transmit data channels on the secondary stream with reference to the gain factor of the first reference channel. The power offset may be used to determine other parameters, such a serving grant or transport block sizes of channels carried on the secondary stream. The power offset may allow transmission parameters of channels on the secondary stream to be determined based on the transmit power level of the primary stream and a gain factor for a reference channel transmitted via the primary stream.