Abstract:
In one example, a system includes a load module, a power module, a series module, and a control module. The power module is configured to generate a supply power. The load module is configured to select a subset of light emitting diodes (LEDs) from a set of LEDs. The series module is configured to receive the supply power from the power module, dissipate a portion of the supply power, and output, to the subset of LEDs, a remaining portion of the supply power as a load power. The control module is configured to drive the series module to limit an amount of power at the subset of LEDs.
Abstract:
In one example, a system includes a load module, a voltage module, and a controller. The load module is configured to selectively bypass each load unit of a plurality of load units to form a series string of load units. The voltage module is configured to output a voltage across the series string of load units that is based on a target voltage. The controller is configured to output an indication of the target voltage, estimate a time delay for switching one or more load units of the plurality of load units, and output, after outputting the indication of the target voltage for the time delay, a control signal to switch one or more load units of the plurality of load units such that the series string of load units has the target quantity of load units.
Abstract:
A current regulator controller includes a differential amplifier that is arranged to output a current sense signal based on a differential input signal and a first stage trim signal. The current regulator controller also includes a first stage trim circuit that is arranged to provide the first stage trim signal. The current regulator controller also includes a digital-to-analog converter that is arranged to provide a set signal based on a digital input signal and a second stage trim signal. The current regulator controller also includes a second stage trim circuit that is arranged to provide the second stage trim signal. The current regulator controller also includes an error amplifier that is arranged to output an error signal based on the set signal and the current sense signal. The regulation of the current is based on the error signal.
Abstract:
A device for switching Gallium Nitride (GaN) devices includes a high side driver, low side driver, and high side charge circuitry. The high side driver is adapted to control a high side GaN device using a high side supply. The low side driver is adapted to control a low side GaN device using a low side supply. The high side charge circuitry is adapted to charge the high side supply with the low side supply when the low side driver activates the low side GaN device.
Abstract:
In one example, a system includes a load module, a power module, a series module, and a control module. The power module is configured to generate a supply power. The load module is configured to select a subset of light emitting diodes (LEDs) from a set of LEDs. The series module is configured to receive the supply power from the power module, dissipate a portion of the supply power, and output, to the subset of LEDs, a remaining portion of the supply power as a load power. The control module is configured to drive the series module to limit an amount of power at the subset of LEDs.
Abstract:
An example method for preventing overcurrent in light-emitting diode (LED) chains comprises deactivating a current regulation control loop connected to a plurality of LED chains; regulating, via a voltage regulation control loop, a forward voltage of the plurality of LED chains; upon determining that a forward voltage of the plurality of LED chains is equal to a target operating voltage for a subset of the plurality of LED chains, bypassing at least one of the plurality of LED chains such that only the subset of the plurality of LED chains is connected to the current regulation control loop; and upon determining that an output current of the subset of the plurality of LED chains is equal to a target operating current for the subset of the plurality of LED chains: deactivating the voltage regulation control loop; and activating the current regulation control loop.
Abstract:
In one example, a method includes determining, by a device of a system, a voltage feedback value that represents a voltage level of a power signal being provided to a plurality of load elements that are selectively active. In this example, the method also includes adjusting, by the device and based on a quantity of load elements of the plurality of load elements that are active, the voltage level of the power signal such that the voltage feedback value remains less than or equal to an overvoltage threshold.
Abstract:
Methods, devices, and integrated circuits are disclosed for applying an active output voltage discharge for a buck-boost converter. One example is directed to a method of operating a buck-boost converter that comprises an inductor, an output capacitor, and an output. The method includes receiving an indication of an altered output voltage requirement in the buck-boost converter. The method further includes deactivating a control loop in the buck-boost converter. The method further includes applying an active discharge of voltage from the output capacitor through the inductor to ground, thereby altering the voltage at the output of the buck-boost converter from a first output voltage to a second output voltage that corresponds to the altered output voltage requirement. The method further includes reactivating the control loop.
Abstract:
Methods, devices, and integrated circuits are disclosed for applying an active output voltage discharge for a buck-boost converter. One example is directed to a method of operating a buck-boost converter that comprises an inductor, an output capacitor, and an output. The method includes receiving an indication of an altered output voltage requirement in the buck-boost converter. The method further includes deactivating a control loop in the buck-boost converter. The method further includes applying an active discharge of voltage from the output capacitor through the inductor to ground, thereby altering the voltage at the output of the buck-boost converter from a first output voltage to a second output voltage that corresponds to the altered output voltage requirement. The method further includes reactivating the control loop.