Abstract:
Embodiments of multinode hubs for trust operations are disclosed herein. In some embodiments, a multinode hub may include a plurality of memory regions, a trapping module, and a trusted platform module (TPM) component. Each memory region may be associated with and receive trust operation data from a coherent computing node. The trapping module may generate trap notifications in response to accesses to the plurality of memory regions by the associated coherent computing nodes. The trap notifications may indicate which of the plurality of memory locations has been accessed, and the TPM component may process the trust operation data in a memory region indicated by a trap notification. Other embodiments may be disclosed and/or claimed.
Abstract:
A method, apparatus, system, and computer program product for secure server system management. A payload containing system software and/or firmware updates is distributed in an on-demand, secure I/O operation. The I/O operation is performed via a secured communication channel inaccessible by the server operating system to an emulated USB drive. The secure communication channel can be established for the I/O operation only after authenticating the recipient of the payload, and the payload can be protected from access by a potentially-infected server operating system. Furthermore, the payload can be delivered on demand rather than relying on a BIOS update schedule, and the payload can be delivered at speeds of a write operation to a USB drive.
Abstract:
Embodiments of multinode hubs for trust operations are disclosed herein. In some embodiments, a multinode hub may include a plurality of memory regions, a trapping module, and a trusted platform module (TPM) component. Each memory region may be associated with and receive trust operation data from a coherent computing node. The trapping module may generate trap notifications in response to accesses to the plurality of memory regions by the associated coherent computing nodes. The trap notifications may indicate which of the plurality of memory locations has been accessed, and the TPM component may process the trust operation data in a memory region indicated by a trap notification. Other embodiments may be disclosed and/or claimed.
Abstract:
An embodiment includes a secure and stable method for sending information across a compute continuum. For example, the method may include executing an application (e.g., video player) on a first node (e.g., tablet) with a desire to perform “context migration” to a second node (e.g., desktop). This may allow a user to watch a movie on the tablet, stop watching the movie, and then resume watching the movie from the desktop. To do so in a secure and stable manner, the first node may request security and performance credentials from the second node. If both credential sets satisfy thresholds, the first node may transfer content (e.g., encrypted copy of a movie) and state information (e.g., placeholder indicating where the movie was when context transfer began). The second node may then allow the user to resume his or her movie watching from the desktop. Other embodiments are described herein.
Abstract:
Embodiments of multinode hubs for trust operations are disclosed herein. In some embodiments, a multinode hub may include a plurality of memory regions, a trapping module, and a trusted platform module (TPM) component. Each memory region may be associated with and receive trust operation data from a coherent computing node. The trapping module may generate trap notifications in response to accesses to the plurality of memory regions by the associated coherent computing nodes. The trap notifications may indicate which of the plurality of memory locations has been accessed, and the TPM component may process the trust operation data in a memory region indicated by a trap notification. Other embodiments may be disclosed and/or claimed.
Abstract:
Technologies for providing manageability redundancy for micro server and clustered System-on-a-Chip (SoC) deployments are presented. A configurable multi-processor apparatus may include multiple integrated circuit (IC) blocks where each IC block includes a task block to perform one or more assignable task functions and a management block to perform management functions with respect to the corresponding IC block. Each task block and each management block may include one or more instruction processors and corresponding memory. Each IC block may be controllable to perform a function of one or more other IC blocks. The IC blocks may communicate with each other via a management communication infrastructure that may include a communication path from each of the management blocks to each of the other management blocks. Via the management communication infrastructure, the management blocks may bridge communication paths between pairs of management blocks.