摘要:
Method and apparatus for dynamic Node healing in a Multi-Node environment. A multi-node platform controller hub (MN-PCH) is configured to support multiple nodes through use of dedicated interfaces and components and shared capabilities. Interfaces and components may be configured to be used by respective nodes, or may be configured to support enhanced resiliency as redundant primary and spare interfaces and components. In response to detecting a failing or failing primary interface or component, the MN-PCH automatically performs failover operations to replace the primary with the spare. Moreover, the failover operation is transparent to the operating systems running on the platform's nodes.
摘要:
An apparatus includes physical layer circuitry with lanes to couple the apparatus to endpoint devices. a first input/output (I/O) controller to couple a first processor to the physical layer circuitry, and a second I/O controller to couple a second processor to the physical layer circuitry. The first and second I/O controllers are compatible with a Peripheral Component Interconnect Express (PCIe)-based protocol. The apparatus also includes a flexible input/output adapter (FIA) coupling the first and second I/O controllers to the lanes. The FIA selectively assigns access to each lane of the lanes by either the first or second I/O controller. The apparatus also includes a power management controller (PMC) communicably coupled to the FIA. The PMC causes the FIA to dynamically assign access to at least one of the lanes by the first or second I/O controller without a reboot cycle.
摘要:
An apparatus includes physical layer circuitry with lanes to couple the apparatus to endpoint devices. a first input/output (I/O) controller to couple a first processor to the physical layer circuitry, and a second I/O controller to couple a second processor to the physical layer circuitry. The first and second I/O controllers are compatible with a Peripheral Component Interconnect Express (PCIe)-based protocol. The apparatus also includes a flexible input/output adapter (FIA) coupling the first and second I/O controllers to the lanes. The FIA selectively assigns access to each lane of the lanes by either the first or second I/O controller. The apparatus also includes a power management controller (PMC) communicably coupled to the FIA. The PMC causes the FIA to dynamically assign access to at least one of the lanes by the first or second I/O controller without a reboot cycle.
摘要:
Devices, systems, and methods for implementing a scalable extended basic input/output system (BIOS) region that increases the BIOS footprint of a system, are provided and described. In addition to a traditional BIOS region located in the memory mapped input/output (MMIO) low region, an extended BIOS region is initialized in a MMIO area of the system address map, where both regions are accessed by MMIO access requests.
摘要:
Embodiments disclosed herein relate to coordinated system boot and reset flows and improve reliability, availability, and serviceability (RAS) among multiple chipsets. In an example, a system includes a master chipset having multiple interfaces, each interface to connect to one of a processor and a chipset, at least one processor connected to the master chipset, at least one non-master chipset connected to the master chipset, and a sideband messaging channel connecting the master chipset and the non-master chipsets, wherein the master chipset is to probe a subset of its multiple interfaces to discover a topology of connected processors and non-master chipsets, and use the sideband messaging channel to coordinate a synchronized boot flow.
摘要:
Embodiments of multinode hubs for trust operations are disclosed herein. In some embodiments, a multinode hub may include a plurality of memory regions, a trapping module, and a trusted platform module (TPM) component. Each memory region may be associated with and receive trust operation data from a coherent computing node. The trapping module may generate trap notifications in response to accesses to the plurality of memory regions by the associated coherent computing nodes. The trap notifications may indicate which of the plurality of memory locations has been accessed, and the TPM component may process the trust operation data in a memory region indicated by a trap notification. Other embodiments may be disclosed and/or claimed.
摘要:
An error handling device logs errors in a computing system including a plurality of devices connected to the error handling device. The error handling device provides groups of error registers. Each group of error registers is associated with a value of a plurality of values. Each of the devices that communicate errors to the error handling device are associated with one of the values. The error handling device receives error messages from the devices connected to the error handling device and for each received error message of the received error messages, determines a value of the plurality of values associated with the device transmitting the received error message, determines the group of error registers associated with the determined value, and log the received error message in the determined group of error registers.
摘要:
Embodiments of multinode hubs for trust operations are disclosed herein. In some embodiments, a multinode hub may include a plurality of memory regions, a trapping module, and a trusted platform module (TPM) component. Each memory region may be associated with and receive trust operation data from a coherent computing node. The trapping module may generate trap notifications in response to accesses to the plurality of memory regions by the associated coherent computing nodes. The trap notifications may indicate which of the plurality of memory locations has been accessed, and the TPM component may process the trust operation data in a memory region indicated by a trap notification. Other embodiments may be disclosed and/or claimed.
摘要:
Embodiments of multinode hubs for trust operations are disclosed herein. In some embodiments, a multinode hub may include a plurality of memory regions, a trapping module, and a trusted platform module (TPM) component. Each memory region may be associated with and receive trust operation data from a coherent computing node. The trapping module may generate trap notifications in response to accesses to the plurality of memory regions by the associated coherent computing nodes. The trap notifications may indicate which of the plurality of memory locations has been accessed, and the TPM component may process the trust operation data in a memory region indicated by a trap notification. Other embodiments may be disclosed and/or claimed.
摘要:
A high-speed low dropout (HS-LDO) voltage regulation circuit suitable to enable a power gate unit to produce a variable voltage signal based on the load of a processor is disclosed herein. In various embodiments, selection logic may dynamically enable or disable the HS-LDO circuit to allow the power gate unit to operate under a fully-on or fully-off mode. Other embodiments may be disclosed or claimed.