Abstract:
CABAC coefficient decoding may be increased to two bins per clock by performing a calculation for a first bin followed by renormalization for the first bin in a first thread and performing a calculation for a second bin and renormalization for the second bin being after the first bin calculation and renormalization using a second thread different from the first thread.
Abstract:
Context-adaptive variable length bitstream decoding performance may be improved and power consumption reduced by pushing the variable length decoding beyond one syntax element per clock pulse.
Abstract:
An apparatus includes at least one memory, instructions, and processor circuitry to execute the instructions to track movement of a head of a user wearing earphones, the earphones to move with the movement of the head of the user, the earphones to be communicatively coupled to a computing device. The processor circuitry is to obtain media content, the media content including first audio data for a first channel and second audio data for a second channel. The processor circuitry is to adjust, based on the movement of the head of the user, the first audio data for the first channel and the second audio data for the second channel. The processor circuitry is to cause the adjusted first audio data and the adjusted second audio data to be played by the earphones.
Abstract:
An apparatus includes at least one memory, instructions, and processor circuitry to execute the instructions to track movement of a head of a user wearing earphones, the earphones to move with the movement of the head of the user, the earphones to be communicatively coupled to a computing device. The processor circuitry is to obtain media content, the media content including first audio data for a first channel and second audio data for a second channel. The processor circuitry is to adjust, based on the movement of the head of the user, the first audio data for the first channel and the second audio data for the second channel. The processor circuitry is to cause the adjusted first audio data and the adjusted second audio data to be played by the earphones.
Abstract:
A camera input can be used by the computer to support audio spatialization or to improve audio spatialization of an application that already supports it. A computer system may to support audio spatialization, for example, by modifying the relative latency or relative amplitude of the rendered audio packets. If a sound is intended, for example, to be located on the left side of the user, then the audio channel that is rendered on the headset speaker located on the user's left ear may have a somewhat decreased latency and increased amplitude compared to the other audio channel.
Abstract:
A camera input can be used by the computer to support audio spatialization or to improve audio spatialization of an application that already supports it. A computer system may to support audio spatialization, for example, by modifying the relative latency or relative amplitude of the rendered audio packets. If a sound is intended, for example, to be located on the left side of the user, then the audio channel that is rendered on the headset speaker located on the user's left ear may have a somewhat decreased latency and increased amplitude compared to the other audio channel.
Abstract:
Systems and methods are described including dynamically configuring a shared buffer to support processing of at least two video read streams associated with different video codec formats. The methods may include determining a buffer write address within the shared buffer in response to a memory request associated with one read stream, and determining a different buffer write address within the shared buffer in response to a memory request associated with the other read stream.