Abstract:
Disclosed herein is a driving method for an image display apparatus which includes an image display panel having a plurality of pixels arrayed in a two-dimensional matrix and each configured from a first subpixel for displaying a first primary color, a second subpixel for displaying a second primary color, a third subpixel for displaying a third primary color and a fourth subpixel for displaying a fourth color, and a signal processing section. The signal processing section is capable of calculating a first subpixel output signal, a second subpixel output signal, a third subpixel output signal, and a fourth subpixel output signal. The driving method includes a step of calculating a maximum value (Vmax(S)) of brightness, a saturation (S) and brightness (V(S)), and determining the expansion coefficient (α0).
Abstract:
According to an aspect, a color conversion device includes a signal processing unit and a signal output unit. When a color specified in a predetermined color space by color data based on input signals is a color outside a defined color gamut defined in the color space, the signal processing unit generates in-defined-gamut data, and when the color specified in the color space by the color data based on the input signals is a color on a border of or inside the defined color gamut, the signal processing unit does not convert the color data based on the input signals into color data of a color different from that specified by the color data based on the input signals, and generates in-defined-gamut data identical to the color data based on the input signals, and. The signal processing unit generates output signals based on the in-defined-gamut data.
Abstract:
According to one embodiment, a display device includes a display panel, a light source, a light guide and a prism sheet. The display panel includes a display area in which unit pixels each containing first sub-pixels and second sub-pixels are arranged along a first direction and a second direction. In the display area, the first sub-pixels have a width different from that of the second sub-pixel in at least one of the first direction and the second direction, or each unit pixel contains different numbers of first sub-pixels and second sub-pixels. The prism sheet is interposed between the light guide and the display panel and includes prisms extending along a third direction inclined with respect to the second direction by an acute angle of inclination.
Abstract:
According to an aspect, an imaging display system includes an imaging device, a display device, and a processing device. The imaging device includes a rolling shutter image sensor that takes an image. The display device displays the image. The processing device performs image processing on the image. The imaging display system is mounted on a movable body that moves in a certain direction on a reference plane. The imaging device is arranged at an angle with respect to a moving direction of the movable body on the reference plane. An imaging scanning direction of the image on the image sensor is horizontal with respect to the reference plane. A display scanning direction of the image displayed on the display device coincides with the imaging scanning direction.
Abstract:
A display device including a first substrate including a plurality of reflection electrodes on a front side of the first substrate, the plurality of reflection electrodes including a first reflection electrode and a second reflection electrode which is farther away from a light source than the first reflection electrode; a second substrate including a transparent electrode on a back side of the second substrate; a light modulation layer which includes a polymer dispersed liquid crystal layer containing a liquid crystalline monomer and liquid crystal molecules dispersed in the liquid crystalline monomer, the light modulation layer being disposed between the plurality of reflection electrodes and the transparent electrode; a drive section driving the plurality of reflection electrodes and the transparent electrode, wherein an application time of a first drive voltage applied between the transparent electrode and the first reflection electrode is shorter than an application time of a second drive voltage applied between the transparent electrode and the second reflection electrode.
Abstract:
Disclosed herein is a display apparatus including: a first pixel including three sub-pixels for displaying three primary colors respectively; and a second pixel including three sub-pixels for displaying two colors selected among the three primary colors and a predetermined color other than the three primary colors, wherein, in the first pixel, the size of the display surface of a sub-pixel for displaying a specific color included in the three primary colors as a specific color missing from the second pixel is larger than each of the sizes of the display surfaces of the two other sub-pixels for displaying the two other primary colors respectively.
Abstract:
A display device includes a light modulation layer and a light source. The light modulation layer is disposed between a pair of transparent substrates, has determined refractive index anisotropy, and includes plural light modulation elements which differ in responsiveness to an electric field generated by electrodes formed on a transparent substrate. The light source emits light of a determined color incident on the light modulation layer from a side of the light modulation layer. When the electric field is not generated, the light modulation layer transmits the incident light emitted from the light source. When the electric field is generated, the light modulation layer scatters the incident light and emits scattered light to a transparent substrate.
Abstract:
A display device includes a display unit in which pixels are arranged in a matrix. The pixels each include a first sub-pixel having the largest area among sub-pixels, a second sub-pixel adjacent to the first sub-pixel and having an area smaller than that of the first sub-pixel, and a third sub-pixel adjacent to the first and second sub-pixels, having an area smaller than that of the first sub-pixel, and arranged in the same column as that of second sub-pixels. First, second, and third pixels are aligned in at least one of a column direction or a row direction and each include the first, second, and third sub-pixels that can display different one of first, second, and third colors. Areas of the first, second, and third colors displayable by the first, second, and third pixels in total are equal to one another.
Abstract:
Provided are a display apparatus and an illumination apparatus including: a light source; a time division control unit that performs a time division operation on a value represented by a first luminance control signal of a first bit number for controlling luminance of the light source to generate second luminance control signals each having a second bit number that is smaller than the first bit number and generates third luminance control signals each having a pulse width that corresponds to one of the values represented by the second luminance control signals; and a drive unit that generates drive signals for causing the light source to emit light on the basis of the third luminance control signals and supplies the drive signals to the light source.
Abstract:
A display device includes a signal processing unit that receives input signals, and calculates output signals to a first sub-pixel, a second sub-pixel, a third sub-pixel, and a fourth sub-pixel. The signal processing unit calculates a frequency of pixels belonging to each of a plurality of partitions using a light quantity of a surface light source. The signal processing unit calculates an index value for each of the partitions by at least multiplying the cumulative frequency being obtained by sequentially adding the frequency of pixels from a partition having the maximum light quantity among the partitions, and the number of partitions representing a position of a partition to which the cumulative frequency belongs counted from the partition having the maximum light quantity. The signal processing unit controls luminance of the surface light source based on a partition in which the index value exceeds a threshold.