Abstract:
A plurality of light emitting layers are divided into a plurality of groups in response to light emitting colors. Each of the plurality of groups includes a group corresponding to the plurality of light emitting layers. Transmitted light colors of a plurality of filter layers are respectively the same type of colors as the light emitting colors of the plurality of light emitting layers. Each of the plurality of light emitting layers includes a central area and a peripheral area having mutually different light emitting characteristics within a range corresponding to a plurality of contact areas. Each of the plurality of filter layers includes a filter opening at the center, and is provided at least obliquely upward in an outward direction of the peripheral area.
Abstract:
A column for defining the interval between a TFT substrate and an opposed substrate is formed at a crossing point between a drain line and a scanning line. At the crossing point where the column is formed, the drain line is formed to have a wider width to prevent light leakage. Further, at the crossing point where the column is formed, the scanning line is formed to have a narrower width to prevent increase of capacitance between the drain line and the scanning line. The column is formed at a crossing point corresponding to a specific color, e.g., a blue pixel B, so that a difference in transmittance and in characteristic of thin film transistors due to formation of the column is initially compensated.
Abstract:
A display device includes a circuit substrate that is formed of a plurality of layers including a light control element; a counter substrate that faces a surface of the circuit substrate on which the light control element is disposed, with a gap therebetween; a seal that is disposed between the circuit substrate and the counter substrate to surround the light control element; and a filler with which a sealed space surrounded by at least the circuit substrate, the counter substrate, and a sealing surface of the seal is filled. The sealing surface includes internal angle corner surfaces formed by an inner surface of the seal, and a convex surface formed adjacent to the corner surfaces from at least one of the circuit substrate, the counter substrate, and the seal.
Abstract:
The present invention realizes a bright image display by enhancing a numerical aperture of pixels. At least a portion of a pixel electrode is overlapped to a thin film transistor by way of a first insulation film, the pixel electrode is connected to an output electrode of the thin film transistor via a contact hole which is formed in the first insulation film, the counter electrode is arranged above the pixel electrode by way of a second insulation film in a state that the counter electrode is overlapped to the pixel electrode, the counter electrode is formed at a position avoiding the contact hole formed in the first insulation film as viewed in a plan view, and at least a portion of the counter electrode is overlapped to the thin film transistor.
Abstract:
To form a sufficiently large storage capacitor, a liquid crystal display device includes a liquid crystal display panel having a first substrate, a second substrate, and a liquid crystal held between the first substrate and the second substrate, the liquid crystal display panel having multiple pixels arranged in matrix. The first substrate has, in a transmissive display area provided in each of the pixels, a laminated structure containing a first transparent electrode, a first insulating film, a second transparent electrode, a second insulating film, and a third transparent electrode which are laminated in this order. The first transparent electrode and the second transparent electrode are electrically insulated from each other and together form a first storage capacitor through the first insulating film, and the second transparent electrode and the third transparent electrode are electrically insulated from each other and together form a second storage capacitor through the second insulating film.
Abstract:
A column for defining the interval between a TFT substrate and an opposed substrate is formed at a crossing point between a drain line and a scanning line. At the crossing point where the column is formed, the drain line is formed to have a wider width to prevent light leakage. Further, at the crossing point where the column is formed, the scanning line is formed to have a narrower width to prevent increase of capacitance between the drain line and the scanning line. The column is formed at a crossing point corresponding to a specific color, e.g., a blue pixel B, so that a difference in transmittance and in characteristic of thin film transistors due to formation of the column is initially compensated.
Abstract:
The present invention realizes a bright image display by enhancing a numerical aperture of pixels. At least a portion of a pixel electrode is overlapped to a thin film transistor by way of a first insulation film, the pixel electrode is connected to an output electrode of the thin film transistor via a contact hole which is formed in the first insulation film, the counter electrode is arranged above the pixel electrode by way of a second insulation film in a state that the counter electrode is overlapped to the pixel electrode, the counter electrode is formed at a position avoiding the contact hole formed in the first insulation film as viewed in a plan view, and at least a portion of the counter electrode is overlapped to the thin film transistor.
Abstract:
How a flat panel display is bent by external forces is controlled. A display panel 40 has display elements, formed corresponding to the arrangement of pixels, on a first principal surface of a flexible display panel substrate 46. The display panel substrate 46 has a linear groove 48 on at least part of a second principal surface of the display panel substrate 46. A resin is stacked on a support substrate having a linear ridge on at least part of the surface of the support substrate. The surface shape of the support substrate is transferred to the resin so that the groove 48 is molded. Thus, the display panel substrate 46 made of the resin is formed on the support substrate. After the display elements are formed on the display panel substrate 46, the support substrate is removed from the display panel substrate 46.
Abstract:
A display device having a plurality of pixels arranged in a matrix includes a first pixel arranged with a first light emitting region including a first end part, the first pixel being arranged in a first column and first row of the matrix, a second pixel arranged in adjacent in a row direction with the first pixel in a second column adjacent to the first column, the second pixel being arranged with a second light emitting region including a second end part, the first end part and second end part having a first non-parallel part, and a third pixel arranged adjacent in a column direction with the second pixel in a second row adjacent to the first row, the third pixel being arranged with a third light emitting region including a third end part, the second end part and third end part having a second non-parallel part.
Abstract:
How a flat panel display is bent by external forces is controlled. A display panel 40 has display elements, formed corresponding to the arrangement of pixels, on a first principal surface of a flexible display panel substrate 46. The display panel substrate 46 has a linear groove 48 on at least part of a second principal surface of the display panel substrate 46. A resin is stacked on a support substrate having a linear ridge on at least part of the surface of the support substrate. The surface shape of the support substrate is transferred to the resin so that the groove 48 is molded. Thus, the display panel substrate 46 made of the resin is formed on the support substrate. After the display elements are formed on the display panel substrate 46, the support substrate is removed from the display panel substrate 46.