Abstract:
In the step of curing a resin for bonding a TFT substrate and a counter substrate each having an alignment film that has been optically aligned by using UV-light, damage to the alignment film due to the UV-light can be prevented without using a light shielding mask. A UV-light absorption layer is formed between each black matrix on the counter substrate. The TFT and counter substrates are sealed at their periphery by a resin that is cured by UV-light radiated from the counter substrate side. Since the absorption layer has a high absorbability to UV-light at a wavelength of 300 nm or less that degrades the alignment film, damage to the alignment film due to the UV-light for curing the resin can be prevented. Thus, provision of a light shielding mask for shielding the UV-light for the display region can be saved.
Abstract:
A liquid crystal display device comprising a TFT substrate having pixels each including a common electrode formed on an organic passivation film, an interlayer insulating film formed so as to cover the common electrode, a pixel electrode having a slit and formed on the interlayer insulating film, a through-hole formed in the organic passivation film and the interlayer insulating film, and a source electrode electrically conducted to the pixel electrode via the through-hole. A taper angle at a depth of D/2 of the through-hole is equal to or more than 50 degrees. The pixel electrode covers part of a side wall of the through-hole but does not cover the remaining part of the side wall of the through-hole. This configuration facilitates the alignment film material to flow into the through-hole, thereby solving a thickness unevenness of the alignment film in vicinity of the through-hole.
Abstract:
A liquid crystal display device includes a TFT substrate having a first alignment film and an opposing substrate having a second alignment film with liquid crystals sandwiched therebetween. One of the first and second alignment films, comprises a first polyimide produced via polyamide acid ester containing cyclobutane as a precursor and a second polyimide produced via polyamide acid as a precursor. The polyamide acid has a higher polarity than that of the polyamide acid ester. The one of the first and second alignment films is responsive to photo-alignment. A first side of the one of the first and second alignment films is adjacent to the liquid crystals, and a second side thereof is closer to one of the TFT substrate and the counter substrate than the first side. The first side contains more of the first polyimide and less of the second polyimide than the second side.
Abstract:
A liquid crystal display device includes a TFT substrate having a first alignment film and an opposing substrate having a second alignment film with liquid crystals sandwiched therebetween. One of the first and second alignment films, comprises a first polyimide produced via polyamide acid ester containing cyclobutane as a precursor and a second polyimide produced via polyamide acid as a precursor. The polyamide acid has a higher polarity than that of the polyamide acid ester. The one of the first and second alignment films is responsive to photo-alignment. A first side of the one of the first and second alignment films is adjacent to the liquid crystals, and a second side thereof is closer to one of the TFT substrate and the counter substrate than the first side. The first side contains more of the first polyimide and less of the second polyimide than the second side.
Abstract:
A method for fabricating a liquid crystal display device including a TFT substrate having an alignment film formed thereon, an opposing substrate, and a liquid crystal layer sandwiched therebetween. The alignment film on the TFT substrate includes a photolytic polymer made from a first precursor including cyclobutane, and a non-photolytic polymer made from a second precursor. The method includes the steps of depositing a mixture material including the first precursor and the second precursor in which the second precursor settles more on an upper surface of the TFT substrate than the first precursor, imidizing the mixture material, and irradiating the mixture material with ultraviolet light for photo-alignment, and after irradiating, heating the mixture material to form the alignment film.
Abstract:
A liquid crystal display device includes first and second substrates, at least one of which is transparent, a liquid crystal layer which is disposed between the first and second substrates, a pixel electrode and a common electrode which are formed on one of the first and second substrates and which apply an electric field to the liquid crystal layer, a plurality of active elements which is connected to the pixel electrode and the common electrode, an alignment film which is disposed on at least one of the first and second substrates and has one surface contacting the liquid crystal layer, and an underlying layer which is disposed on at least one of the first and second substrates and contacts the other surface of the alignment film. The pixel electrode is laminated on the common electrode having a plane shape through an isolation film.
Abstract:
In a liquid crystal display device, a common electrode is formed on an organic passivation film, an interlayer insulating film is formed on the common electrode, a pixel electrode with a slit is formed on the interlayer insulating film, and a through hole is formed in the organic passivation film and the interlayer insulating film, so that the pixel electrode is connected to a source electrode of a TFT through the through hole. Further, the taper angle around the upper base of the through hole is smaller than the taper angle around the lower base. Thus, the alignment film material can easily flow into the through hole when the diameter of the through hole is reduced to connect the pixel and source electrodes, preventing display defects such as uneven brightness due to the absence of the alignment film or due to the alignment film irregularity around the through hole.
Abstract:
According to one embodiment, a display device including, a substrate including a first area including a display area, a second area including a mount area, and a third area located between the first area and the second area, a first inorganic insulating layer provided on the substrate in the first area and the second area, a line provided on the first inorganic insulating layer and extending across the first area, the second area, and the third area, and, a second inorganic insulating layer provided on the line, the second inorganic insulating layer extending to an area overlaid on at least the first inorganic insulating layer.
Abstract:
In a liquid crystal display device, a common electrode is formed on an organic passivation film, an interlayer insulating film is formed on the common electrode, a pixel electrode with a slit is formed on the interlayer insulating film, and a through hole is formed in the organic passivation film and the interlayer insulating film, so that the pixel electrode is connected to a source electrode of a TFT through the through hole. Further, the taper angle around the upper base of the through hole is smaller than the taper angle around the lower base. Thus, the alignment film material can easily flow into the through hole when the diameter of the through hole is reduced to connect the pixel and source electrodes, preventing display defects such as uneven brightness due to the absence of the alignment film or due to the alignment film irregularity around the through hole.
Abstract:
An optical sensor capable of obtaining a plurality of types of information by a plurality of wavelengths in a short time is provided. The optical sensor includes a light receiving unit that includes a first and second pinhole layer that includes a plurality of pinholes, a first and second transmission layer, and a plurality of microlenses belonging to a first and second group, the microlenses being disposed at positions respectively overlapping the plurality of pixels on the second transmission layer. Either of the plurality of microlenses belonging to the first or second group is a first wavelength selection unit that transmits light of a first wavelength. At least one of the other of the plurality of microlenses belonging to the first and second group, the first transmission layer, and the second transmission layer is a second wavelength selection unit that transmits light of a second wavelength.