摘要:
In a method for producing CsX:Eu stimulable phosphors and screens or panels provided with said phosphors as powder phosphors or vapor deposited needle-shaped phosphors suitable for use in image forming methods for recording and reproducing images of objects made by high energy radiation, said CsX:Eu stimulable phosphors are essentially free from oxygen in their crystal structure, wherein X represents a halide selected from the group consisting of Br, Cl and combinations thereof; and wherein the method further comprises the steps of mixing CsX with a compound or combinations of compounds having as a composition CsxEuyX′x+αy, wherein the ratio of x to y exceeds a value of 0.25, wherein α≧2 and wherein X′ is a halide selected from the group consisting of Cl, Br and I and combinations thereof; heating said mixture at a temperature above 450° C.; cooling said mixture, and, optionally, annealing and recovering said CsX:Eu phosphor.
摘要:
In a method of increasing humidity stability of a storage phosphor panel having a phosphor layer coated onto a support by vapor depositing raw phosphor precursor materials of a matrix and an activator component from one or more crucible(s) and/or crucible unit(s) in a vapor deposition apparatus, after ending vapor depositing an additional “over-annealing” step is performed in humidity conditions wherein more than 10 g of water per cubic meter of dry conditioning air is present.
摘要:
In a method of preparing a storage phosphor layer on a support by vapor deposition from a crucible unit by heating as phosphor precursor raw materials a matrix component and an activator component or a precursor component thereof, wherein said crucible unit comprises at least a bottom and surrounding side walls as a crucible for phosphor precursor raw materials present in said crucible in liquid form, wherein said crucible unit further comprises at least a chimney as part of the crucible unit and a slit allowing phosphor precursor raw materials to escape in vaporized form from said crucible unit in order to deposit it as a phosphor layer onto said support, the step of heating said precursor raw materials in the crucible in liquid form proceeds up to a temperature T1 and the step of heating said precursor raw materials in vaporized form in said chimney, proceeds up to a temperature T2, characterized in that a positive difference in temperature [T2−T1] is maintained.
摘要:
A photostimulable storage phosphor screen or panel suitable for use in mammographic applications comprises on a support, a storage phosphor layer and, adjacent thereto, an outermost top-coat layer, wherein said top-coat layer has a roughness profile such that an average spacing between peaks as measured by means of a stylus profiler over and along its scan-distance, is less than 250 μm.
摘要:
An image storage screen or panel, suitable for use in applications related with computed radiography comprises, on a support, a binderless needle-shaped stimulable CsBr:Eu phosphor layer, wherein, besides low amounts of a europium activator or dopant in favor of homogeneous distribution of said activator in the CsBr matrix, presence of well-defined amounts of rubidium halide and cesium chloride in said matrix, and, optionally, further presence of alkali metal, alkaline earth metal and/or metal earth salts, and/or, optionally, other metal salts or oxides, provides a remarkable speed increase, without loss in sharpness.
摘要:
An image storage screen or panel, suitable for use in applications related with computed radiography comprises, on a support, a binderless needle-shaped stimulable CsBr:Eu phosphor layer, wherein, besides low amounts of a europium activator or dopant in favor of homogeneous distribution of said activator in the CsBr matrix, presence of well-defined amounts of rubidium halide and cesium chloride in said matrix, and, optionally, further presence of alkali metal, alkaline earth metal and/or metal earth salts, and/or, optionally, other metal salts or oxides, provides a remarkable speed increase, without loss in sharpness.
摘要:
A method for producing CsX:Eu stimulable phosphors and screens or panels provided with said phosphors as powder phosphors or vapor deposited needle-shaped phosphors suitable for use in image forming methods for recording and reproducing images of objects made by high energy radiation, wherein said CsX:Eu stimulable phosphors are essentially free from oxygen in their crystal structure, and wherein X represents a halide selected from the group consisting of Br, Cl and combinations thereof, and wherein the method further makes use of starting compounds (precursors) or combinations of precursors for the synthesis of said CsX:Eu stimulable phosphors, said precursors (starting compounds) having as a composition CsxEuyX′x+αy, wherein the ratio of x to y exceeds a value of 0.25, wherein α>2 and wherein X′ is a halide selected from the group consisting of Cl, Br and I and combinations thereof; heating said mixture at a temperature above 450° C.; cooling said mixture, and optionally annealing and recovering said CsX:Eu phosphor.
摘要翻译:一种生产CsX:Eu可激发的荧光体和屏幕或面板的方法,所述荧光体具有所述磷光体作为粉末磷光体或气相沉积的针状磷光体,适用于用于记录和再现由高能量辐射制成的物体的图像的图像形成方法,其中所述CsX :Eu可激发荧光体在其晶体结构中基本上不含氧,其中X表示选自Br,Cl及其组合的卤化物,并且其中该方法进一步利用起始化合物(前体)或前体的组合 为了合成所述CsX:Eu可激发的荧光体,所述前体(起始化合物)具有组成Cs x x Eu x Y x + alphay SUB 其中x与y的比值超过0.25,其中α> 2,其中X'是选自Cl,Br和I的卤化物及其组合; 在高于450℃的温度下加热所述混合物; 冷却所述混合物,并且任选地退火和回收所述CsX:Eu荧光体。
摘要:
In a method of preparing a storage phosphor or a scintillator layer on a support by vapor depositing from a crucible unit in a vapor deposition apparatus, while heating as phosphor or scintillator precursor raw materials a matrix component and an activator component or a precursor component thereof, said crucible unit comprises a bottom and surrounding side walls as a container for the said phosphor or scintillator precursor raw materials present in said crucible, said crucible is provided with an internal lid with perforations (5) and said crucible unit further comprises a chimney as part of the said crucible unit and a slit allowing molten, liquefied phosphor or scintillator precursor raw materials to escape in vaporized form under reduced pressure from said crucible unit in order to become deposited as a phosphor or scintillator layer onto said support; and at least one heating means (1) in the chimney (2) is positioned under a heat shield with a slit (3) and a slot outlet (3′), covering thereby said crucible unit and making part of said chimney (2), so that said heating means (1) cannot be observed when looking into the vaporization unit through said slot outlet (3′) from any point in the plane of the said support present as a vapor deposition target in the said vapor deposition apparatus and, while vaporizing said phosphor or scintillator precursor raw materials, a vapor cloud escapes from said slot outlet (3′) in the direction of the said support so that the ratio of the longest radius of the said vapor cloud versus the radius perpendicular thereto, when projected onto the phosphor or scintillator plate or panel from whatever an intersection through the said vapor cloud between slot outlet (3′) and support is at least 1.3, said intersection being taken parallel with the said support.
摘要:
In a photostimulable storage phosphor screen or panel wherein said screen comprises storage phosphor particles dispersed in a binder and wherein said particles have a particle size distribution having a d99 which is not more than 15 μm, said d99 expressing a grain size limit above which not more than 1% by weight of phosphor powder particles is present in said phosphor powder, its structure noise parameter DQE2rel exceeds a value of 0.70 and a ratio of d99 (expressed in μm) and DQE2rel is not more than 25:1, wherein DQE2rel is the ratio of the DQE2 obtained at a dose of 22 mR to the DQE2 obtained at a dose of 3 mR, as expressed in formula (I) DQE2rel=DQE2(22 mR))/DQE2(3 mR) (I) which is representative for an amount of screen-structure noise produced by said screen or panel in the complete spatial frequency range.
摘要:
In a photostimulable storage phosphor screen or panel wherein said screen comprises storage phosphor particles dispersed in a binder and wherein said particles have a particle size distribution having a d99 which is not more than 15 μm, said d99 expressing a grain size limit above which not more than 1% by weight of phosphor powder particles is present in said phosphor powder, its structure noise parameter DQE2rel exceeds a value of 0.70 and a ratio of d99 (expressed in μm) and DQE2rel is not more than 25:1, wherein DQE2rel is the ratio of the DQE2 obtained at a dose of 22 mR to the DQE2 obtained at a dose of 3 mR, as expressed in formula (I) DQE2rel=DQE2(22 mR))/DQE2(3 mR) (I) which is representative for an amount of screen-structure noise produced by said screen or panel in the complete spatial frequency range.