摘要:
In a method of preparing a storage phosphor layer on a support by vapor deposition from a crucible unit by heating as phosphor precursor raw materials a matrix component and an activator component or a precursor component thereof, wherein said crucible unit comprises at least a bottom and surrounding side walls as a crucible for phosphor precursor raw materials present in said crucible in liquid form, wherein said crucible unit further comprises at least a chimney as part of the crucible unit and a slit allowing phosphor precursor raw materials to escape in vaporized form from said crucible unit in order to deposit it as a phosphor layer onto said support, the step of heating said precursor raw materials in the crucible in liquid form proceeds up to a temperature T1 and the step of heating said precursor raw materials in vaporized form in said chimney, proceeds up to a temperature T2, characterized in that a positive difference in temperature [T2−T1] is maintained.
摘要:
The present invention concerns a method for the treatment of stimulable phosphors and/or screens for use in diagnosis, in particular medical radiography. The method comprises subjecting the stimulable phosphors and/or screens to an epoxide containing gaseous compound, promptly following their manufacture. By applying the method according to the invention yellowing of the stimulable phosphors and/or screens is prevented in a safe and efficient manner; thereby the disadvantages known as such resulting from such yellowing will not occur.
摘要:
In a method of reading a radiation image, stored in a CsBr:Eu type binderless needle-shaped photostimulable or storage phosphor screen after X-ray exposure of said screen, said method comprises the steps of: (1) erasing thermally stimulable energy by exposing said screen to infrared radiation in the wavelength range from 1000 nm to 1550 nm; (2) stimulating said phosphor screen by means of stimulating radiation in the range from 550 to 850 nm; (3) detecting light emitted by the phosphor screen upon stimulation and converting the detected light into a signal representation of said radiation image; (4) erasing said phosphor screen by exposing it to erasing light in the wavelength range of 300 nm to 1500 nm.
摘要:
In favor of lowering corrosion of a radiation image phosphor or scintillator panel comprising, as a layer arrangement of consecutive layers, an anodized aluminum support, a sublayer and a phosphor or scintillator layer having needle-shaped phosphor or scintillator crystals, said sublayer comprises an inorganic metal oxide or a metal compound and has a thickness in the range from 0.1 μm to 2.5 μm.
摘要:
In a method for producing CsX:Eu stimulable phosphors and screens or panels provided with said phosphors as powder phosphors or vapor deposited needle-shaped phosphors suitable for use in image forming methods for recording and reproducing images of objects made by high energy radiation, said CsX:Eu stimulable phosphors are essentially free from oxygen in their crystal structure, wherein X represents a halide selected from the group consisting of Br, Cl and combinations thereof; and wherein the method further comprises the steps of mixing CsX with a compound or combinations of compounds having as a composition CsxEuyX′x+αy, wherein the ratio of x to y exceeds a value of 0.25, wherein α≧2 and wherein X′ is a halide selected from the group consisting of Cl, Br and I and combinations thereof; heating said mixture at a temperature above 450° C.; cooling said mixture, and, optionally, annealing and recovering said CsX:Eu phosphor.
摘要:
In a method for producing CsX:Eu stimulable phosphors and screens or panels provided with said phosphors as powder phosphors or vapor deposited needle-shaped phosphors suitable for use in image forming methods for recording and reproducing images of objects made by high energy radiation, said CsX:Eu stimulable phosphors are essentially free from oxygen in their crystal structure, wherein X represents a halide selected from the group consisting of Br, Cl and combinations thereof; and wherein the method further comprises the steps of mixing CsX with a compound or combinations of compounds having as a composition CsxEuyX′x+αy, wherein the ratio of x to y exceeds a value of 0.25, wherein α≧2 and wherein X′ is a halide selected from the group consisting of Cl, Br and I and combinations thereof; heating said mixture at a temperature above 450° C.; cooling said mixture, and, optionally, annealing and recovering said CsX:Eu phosphor.
摘要:
In a method of increasing humidity stability of a storage phosphor panel having a phosphor layer coated onto a support by vapor depositing raw phosphor precursor materials of a matrix and an activator component from one or more crucible(s) and/or crucible unit(s) in a vapor deposition apparatus, after ending vapor depositing an additional “over-annealing” step is performed in humidity conditions wherein more than 10 g of water per cubic meter of dry conditioning air is present.
摘要:
In a method of preparing a storage phosphor or a scintillator layer on a support by vapor depositing from a crucible unit in a vapor deposition apparatus, while heating as phosphor or scintillator precursor raw materials a matrix component and an activator component or a precursor component thereof, said crucible unit comprises a bottom and surrounding side walls as a container for the said phosphor or scintillator precursor raw materials present in said crucible, said crucible is provided with an internal lid with perforations (5) and said crucible unit further comprises a chimney as part of the said crucible unit and a slit allowing molten, liquefied phosphor or scintillator precursor raw materials to escape in vaporized form under reduced pressure from said crucible unit in order to become deposited as a phosphor or scintillator layer onto said support; and at least one heating means (1) in the chimney (2) is positioned under a heat shield with a slit (3) and a slot outlet (3′), covering thereby said crucible unit and making part of said chimney (2), so that said heating means (1) cannot be observed when looking into the vaporization unit through said slot outlet (3′) from any point in the plane of the said support present as a vapor deposition target in the said vapor deposition apparatus and, while vaporizing said phosphor or scintillator precursor raw materials, a vapor cloud escapes from said slot outlet (3′) in the direction of the said support so that the ratio of the longest radius of the said vapor cloud versus the radius perpendicular thereto, when projected onto the phosphor or scintillator plate or panel from whatever an intersection through the said vapor cloud between slot outlet (3′) and support is at least 1.3, said intersection being taken parallel with the said support.
摘要:
In a photostimulable storage phosphor screen or panel wherein said screen comprises storage phosphor particles dispersed in a binder and wherein said particles have a particle size distribution having a d99 which is not more than 15 μm, said d99 expressing a grain size limit above which not more than 1% by weight of phosphor powder particles is present in said phosphor powder, its structure noise parameter DQE2rel exceeds a value of 0.70 and a ratio of d99 (expressed in μm) and DQE2rel is not more than 25:1, wherein DQE2rel is the ratio of the DQE2 obtained at a dose of 22 mR to the DQE2 obtained at a dose of 3 mR, as expressed in formula (I) DQE2rel=DQE2(22 mR))/DQE2(3 mR) (I) which is representative for an amount of screen-structure noise produced by said screen or panel in the complete spatial frequency range.
摘要:
In a photostimulable storage phosphor screen or panel wherein said screen comprises storage phosphor particles dispersed in a binder and wherein said particles have a particle size distribution having a d99 which is not more than 15 μm, said d99 expressing a grain size limit above which not more than 1% by weight of phosphor powder particles is present in said phosphor powder, its structure noise parameter DQE2rel exceeds a value of 0.70 and a ratio of d99 (expressed in μm) and DQE2rel is not more than 25:1, wherein DQE2rel is the ratio of the DQE2 obtained at a dose of 22 mR to the DQE2 obtained at a dose of 3 mR, as expressed in formula (I) DQE2rel=DQE2(22 mR))/DQE2(3 mR) (I) which is representative for an amount of screen-structure noise produced by said screen or panel in the complete spatial frequency range.