摘要:
A method of manufacturing a display device includes preparing an acceptor substrate, preparing a donor substrate having an organic layer; aligning and combining the acceptor substrate and the donor substrate, and keeping a temperature difference between the acceptor substrate and the donor substrate to transfer the organic layer to the acceptor substrate. Thus, the present invention provides a display device that can simplify a process and decrease a consumption rate of an organic material.
摘要:
In accordance with one or more embodiments of the present disclosure, a method of manufacturing a light-emitting element includes forming an anode on a substrate, forming a first transport layer including one or more first polar compounds on the anode, forming a first non-polar solvent layer on the first transport layer, forming a first polar solution layer including one or more light-emitting compounds on the first non-polar solution layer, drying a polar solvent of the first polar solution layer and the first non-polar solvent layer so that a light-emitting layer including the one or more light-emitting compounds is formed on the first transport layer and forming a cathode on the light-emitting layer. The cathode is disposed opposite to the anode. As such, damage to the first transport layer may be reduced when forming the light-emitting layer, which may improve the reliability and productivity of a manufacturing process.
摘要:
A field emitter includes a cathode, a field emission point part, a first anode, a charge storing plate, and a second anode. The field emission point part faces the first anode and is disposed at a first surface of and electrically connected to the cathode. The charge storing plate is disposed at a second surface, opposite the first surface, of the cathode. The second anode faces the second surface of the cathode. The charge storing plate is interposed between the second anode and the second surface of the cathode. Even if substantially the same electric field is formed in the field emitter as in a field emitter without the charge storing plate, the field emitter having the charge storing plate induces a more effective field emission current than the field emitter without the charge storing plate.
摘要:
An organic light emitting diode device, including a first electrode, a second electrode facing the first electrode, and a light emitting member disposed between the first electrode and the second electrode, the light emitting member including at least one light emitting unit. At least one of the light emitting units may include a first hole injection layer, a second hole injection layer, a hole transport layer, and an emission layer, and a difference between a HOMO energy level of the first hole injection layer and a LUMO energy level of the second hole injection layer may be smaller than about 0.5 eV.
摘要:
An organic light emitting display device includes a hole transport layer (HTL) having a first region and a second region, an emitting layer (EML) disposed on the hole transport layer in the first region, a hydrophobic pattern disposed on the hole transport layer in the second region and an electron transport layer (ETL) disposed on the hydrophobic pattern and the emitting layer.
摘要:
An organic light emitting display device includes a hole transport layer (HTL) having a first region and a second region, an emitting layer (EML) disposed on the hole transport layer in the first region, a hydrophobic pattern disposed on the hole transport layer in the second region and an electron transport layer (ETL) disposed on the hydrophobic pattern and the emitting layer.
摘要:
A refrigerator includes a body forming a refrigeration compartment (for cooling or freezing). The compartment has an access opening closed by a pair of side-by-side doors that are hinged adjacent opposite vertical edges of the opening. Each door includes a frame and a slide mounted in a free edge of the slide for horizontal sliding movement. When the doors are being closed, the slides engage displacement surfaces on the body which pull the slides partially out of the frame so that resilient packing members carried by the slides are moved into contact with one another to create an air seal along a vertical interface between the two doors. A magnet on the body attracts metal plates carried by the slides to hold the doors closed. Keeper members can be mounted on the body for yieldably engaging grooves formed in the slides for aiding in holding the doors closed.
摘要:
In a method of manufacturing an organic light emitting display according to an embodiment, when a thin film transistor substrate including a display area and a non-display area is prepared, an organic light emitting layer is formed on the display area. Then, a first cathode layer is formed on the organic light emitting layer through a first deposition method, and a second cathode layer is formed on the first cathode layer through a second deposition method. The first and/or second deposition method may be performed by using heat. Thus, the light-emitting quality of the organic light emitting display may be improved.
摘要:
In a method of manufacturing an organic light emitting display according to an embodiment, when a thin film transistor substrate including a display area and a non-display area is prepared, an organic light emitting layer is formed on the display area. Then, a first cathode layer is formed on the organic light emitting layer through a first deposition method, and a second cathode layer is formed on the first cathode layer through a second deposition method. The first and/or second deposition method may be performed by using heat. Thus, the light-emitting quality of the organic light emitting display may be improved.
摘要:
An organic light emitting diode device, including a first electrode, a second electrode facing the first electrode, and a light emitting member disposed between the first electrode and the second electrode, the light emitting member including at least one light emitting unit. At least one of the light emitting units may include a first hole injection layer, a second hole injection layer, a hole transport layer, and an emission layer, and a difference between a HOMO energy level of the first hole injection layer and a LUMO energy level of the second hole injection layer may be smaller than about 0.5 eV.