Abstract:
The present disclosure relates to a magnesium hybrid battery and a method for fabricating same. The magnesium hybrid battery according to the present disclosure, which includes magnesium or magnesium alloy metal as an anode, a cathode including a cathode active material wherein not only magnesium ion but also one or more ion selected from lithium ion and sodium ion can be intercalated and deintercalated and an electrolyte including magnesium ion and further including one or more ion selected from lithium ion and sodium, can overcome the limitation of the existing magnesium secondary battery and provide improved battery capacity, output characteristics, cycle life, safety, etc.
Abstract:
Provided are an electrolyte for a magnesium secondary battery having improved ion conductivity and stability, and a method for preparing the same. The electrolyte for a magnesium secondary battery shows higher ion conductivity as compared to the electrolyte according to the related art, increases the dissociation degree of a magnesium halide electrolyte salt, and provides stable electrochemical characteristics. In addition, after determining the capacity, output characteristics and cycle life of the magnesium secondary battery including the electrolyte, the battery provides significantly higher discharge capacity after 100 cycles, as compared to the electrolyte according to the related art. Therefore, the electrolyte may be useful for an electrolyte solution of a magnesium secondary battery.
Abstract:
Disclosed is a silicon-based anode active material for a lithium secondary battery. The silicon-based anode active material imparts high capacity and high power to the lithium secondary battery, can be used for a long time, and has good thermal stability. Also disclosed is a method for preparing the silicon-based anode active material. The method includes (A) binding metal oxide particles to the entire surface of silicon particles or portions thereof to form a silicon-metal oxide composite, (B) coating the surface of the silicon-metal oxide composite with a polymeric material to form a silicon-metal oxide-polymeric material composite, and (C) heat treating the silicon-metal oxide-polymeric material composite under an inert gas atmosphere to convert the coated polymeric material layer into a carbon coating layer.
Abstract:
Provided are a gel polymer electrolyte and a secondary battery including the same. More particularly, the gel polymer electrolyte includes a sodium cation-containing polymer from which sodium cations can be dissociated, and thus provides improved ion conductivity of sodium cations, thereby improving the electrochemical properties of a secondary battery.
Abstract:
A cathode active material for a sodium secondary battery is provided. The cathode active material includes a FeF2.5(0.5H2O)-conductive carbon material composite and is prepared by low-temperature non-aqueous precipitation. The FeF2.5(0.5H2O)-conductive carbon material composite has high capacity and excellent cycle characteristics. In addition, the FeF2.5(0.5H2O)-conductive carbon material composite is prepared in an easy and economical manner by low-temperature non-aqueous precipitation. Therefore, the use of the FeF2.5(0.5H2O)-conductive carbon material composite ensures improved performance of the cathode active material. Further provided are a method for preparing the cathode active material and a sodium secondary battery employing the cathode active material.
Abstract:
Provided is a cathode active material for a lithium secondary battery and a method for preparing the same. The cathode active material for a lithium secondary battery allows a lithium secondary battery to realize high capacity and to maintain maximum capacity even at high voltage, prevents a drop in capacity during repeated charge/discharge cycles, and improves the lifespan of a lithium secondary battery.