摘要:
The invention relates to a hearing device 1 adapted for placement in, at or near a person's ear, the hearing device 1 comprising a microphone 2, a receiver 4 and a signal conditioning means 3 connected to the microphone 2 and to the receiver 4, the microphone 2 being arranged for receiving acoustical signals from the person's surroundings 7 and converting these acoustical signals into electrical signals and the receiver 4 being arranged for converting electrical signals into acoustical signals and transmitting these into the ear's ear canal 13. The object of the present invention is to provide a small, light-weight hearing device 1. The problem is solved in that the receiver 4 comprises a thermoacoustical transducer 18, which allows for a receiver 4 which may take up less space in the hearing device 1 and may have a smaller weight. This has the advantage of allowing the hearing device 1 to be small and light-weight, thus providing an improved wearing comfort. The invention may e.g. be used in hearing aids for compensating a person's loss of hearing capability.
摘要:
A hearing device having a circuitry unit which is adapted for processing sound signals and converting the processed sound signals into corresponding electrical signals. An output module is provided for receiving the electric signals after processing by the circuitry unit. The output module defines an outer surface. At least one venting channel is arranged adjacent to the outer surface of the output module of the hearing device. The hearing device may also have a mold, which is adapted to receive the output module in a through going opening. The at least one venting channel is arranged at the interface between the mold and the output module and advantageously provides a pressure balance in the user's ear canal to minimize occlusion. An ITE-part of a hearing device is furthermore provided.
摘要:
Disclosed is a hearing device system comprising at least one hearing aid circuitry and at least one active noise cancellation unit, the at least one hearing aid circuitry comprises at least one input transducer adapted to convert a first audio signal to an electric audio signal; a signal processor connected to the at least one input transducer and adapted to process said electric audio signal by at least partially correcting for a hearing loss of a user; an output transducer adapted to generate from at least said processed electric audio signal a sound pressure in an ear canal of the user, whereby the generated sound pressure is at least partially corrected for the hearing loss of the user; the at least one active noise cancellation unit being adapted to provide an active noise cancellation signal adapted to perform active noise cancellation of an acoustical signal entering the ear canal in addition to said generated sound pressure, wherein the hearing device system further comprises a combiner unit adapted to combine the processed electric audio signal with the active noise cancellation signal, to obtain a combined signal and to provide the combined signal to the output transducer.
摘要:
The invention regards a method for processing audio signals whereby an audio signal is captured, digitized and processed in the digital domain by a digital signal processing unit or DSP, and where a processed output signal from the digital signal processing unit is converted to the analog domain and served at a transducer for providing a sensation of sound. The DSP unit is provided with mean for performing at least two different digital algorithms which delivers each their processed signal having each their non identical time delay and further the most rewarding sound signal is chosen and served at the output transducer.
摘要:
A method for counteracting the occlusion effect of an electronic device delivering an audio signal to the ear, like a hearing aid or an active ear protector, where the electronic device includes a transmission path with an external microphone or input line which receives a signal from the environment and an signal processor and a receiver which receives processes signal from the signal from the signal processor and delivers sound signals to the ear, whereby an ear piece is inserted into the ear canal and totally or partially blocks the canal. The sound conditions in the cavity between the ear piece and the tympanic membrane are directly or indirectly determined, and whenever condition leading to occlusion problems are determined, the transmission characteristics of the transmission path or the receiver changes in order to counteract the occlusion effect.
摘要:
Disclosed is a hearing device system comprising at least one hearing aid circuitry and at least one active noise cancellation unit, the at least one hearing aid circuitry comprises at least one input transducer adapted to convert a first audio signal to an electric audio signal; a signal processor connected to the at least one input transducer and adapted to process said electric audio signal by at least partially correcting for a hearing loss of a user; an output transducer adapted to generate from at least said processed electric audio signal a sound pressure in an ear canal of the user, whereby the generated sound pressure is at least partially corrected for the hearing loss of the user; the at least one active noise cancellation unit being adapted to provide an active noise cancellation signal adapted to perform active noise cancellation of an acoustical signal entering the ear canal in addition to said generated sound pressure, wherein the hearing device system further comprises a combiner unit adapted to combine the processed electric audio signal with the active noise cancellation signal, to obtain a combined signal and to provide the combined signal to the output transducer.
摘要:
The invention concerns a hearing aid with at least one primary sound to electric converting transducer converting sounds in the environment into electrical signals and a signal processing unit for amplifying the electrical signal according to the needs of the user and an electrical to sound transducer for receiving the amplified electrical signal and delivering a sound signal to the ear wherein at least one further sound to electrical transducer is provided. The said further transducer has a sensitivity to wind noise which is smaller than the sensitivity to wind noise of the primary transducer and further the signal processing unit has means for detecting the level of wind noise in the signal from the primary sound to electric converting transducer. According to the invention also selecting means are provided for selecting the signal to be amplified from either the primary—or the at least one further sound to electrical transducer.
摘要:
The invention relates to a hearing instrument comprising an ITE-part adapted for being positioned in the ear canal of a user, the ITE-part comprising a housing comprising first and second openings adapted for facing towards the ear drum when said ITE-part is mounted in the ear canal, said first and second openings being adapted to allow first and second functional elements of the ITE-part to be in communication with the ear canal, the hearing instrument further comprising a wax filter adapted to fully or partially cover said first and second openings. The invention further relates to the use of a hearing instrument, to a method of wax protection in a hearing instrument and to a wax filter. The object of the present invention is to provide an alternative solution to protect relevant parts of a hearing aid against wax deposition. The problem is solved in that the wax filter comprises at least first and second distinctly different parts for covering respectively, said first and second openings, each of said first and second distinctly different parts of the wax filter being individually optimized. This has the advantage of providing a flexible one-piece wax filter that is optimized according to need. The invention may e.g. be used for the hearing instruments comprising an in-the-ear-part.
摘要:
In the method according to the invention a signal processing unit receives signals from at least two microphones worn on the user's head, which are processed so as to distinguish as well as possible between the sound from the user's mouth and sounds originating from other sources. The distinction is based on the specific characteristics of the sound field produced by own voice, e.g. near-field effects (proximity, reactive intensity) or the symmetry of the mouth with respect to the user's head.