Abstract:
A battery-powered electronic device, such as an electronic hearing protector (100) includes a housing (113) enclosing the battery and an electronics assembly powered by the battery, the electronics assembly comprises a processor controlled by updatable software. The device further includes a first electrical contact (119a) that is a ground line; a second electrical contact (119b) that is a data programming line in a first state, and that is a charging voltage line in a second state; and a third electrical contact (119c) that is a clock line in a first state, and that is a charge enable line in the second state. The first, second and third electrical contacts (119a-c) are accessible from outside the housing (113). A switch enclosed by the housing (113) changes the second electrical contact (119b) between the first state and the second state.
Abstract:
Embodiments relate generally to a system having one or more computerized kiosks (102, 150, 160, 180, 192) operable to associate a personal protection device (104) to a worker's personal information. In some embodiments, the kiosk (102, 150, 160, 180, 192) can use the worker's personal information to custom configure the personal protection device (104), so that the device (104) will better suit the needs of the specific worker.
Abstract:
A system includes a first earpiece having an earpiece housing configured to isolate an ambient environment from a tympanic membrane by physically blocking ambient sound, a microphone disposed within the housing and configured to receive a first ambient audio signal from the ambient environment, a processor operatively connected to the microphone wherein the processor is configured to receive the first ambient audio signal from the microphone and determine if the first ambient signal exceeds a threshold sound level, and a speaker operatively connected to the processor. In a first mode of operation the processor determines that the first ambient audio signal exceeds the threshold sound level and processes the first ambient audio signal to modify the first ambient audio signal. In a second mode of operation the processor determines that the first ambient audio signal does not exceed the threshold sound level and reproduces the first ambient audio signal at the speaker.
Abstract:
A hearing device includes: at least one microphone for converting sound received by the at least one microphone into an audio signal; a sound impulse detector configured for detecting a presence of an impulse in the audio signal; and a signal processor configured for processing the audio signal into a processed audio signal in response to the presence of the impulse in the audio signal as detected by the sound impulse detector; and a receiver coupled to the signal processor for converting the processed audio signal into an output sound signal for emission towards an eardrum of a user; wherein the sound impulse detector is configured for operation in a frequency domain for detecting presence of the impulse in the audio signal.
Abstract:
Embodiments of the disclosure include hearing protection earmuffs, which generally might have two earcups providing passive noise reduction (e.g. an effective NRR to protect a user from a damaging external noise environment). Disclosed embodiments include systems and methods for transmitting external sounds to a speaker within the earcup, blocking transmission of sounds that are higher than a hearing protection threshold, amplifying sounds that are below the hearing protection threshold, and reducing or filtering undesirable background sounds by determining the frequency of the transmitted sounds.
Abstract:
An hearing protection device is provided. The hearing protection device can include a speaker to relay sounds, such as conversations, to the user of the hearing protection. The hearing protection device can include an electronics package that can filter out undesirable sounds, such as to improve the user's ability to hear conversations around them while still protecting the user's ears.
Abstract:
The earplugs for use while sleeping are a set of earplugs adapted to suppress noise from reaching the eardrum of the user while remaining securely in place while sleeping. The earplugs for use while sleeping incorporate a timing device and a tone generating device that generates an alarm adapted to wake the wearer at a predetermined time. The earplugs for use while sleeping comprises a plurality of individual earplugs.
Abstract:
A hearing protection device is disclosed which incorporates integrated audiometric testing, thereby allowing for testing without removal of safety hearing protection. The hearing protection is typically intended to be worn for the duration of a work shift, and allows for self-testing during the shift. Embodiments of the device may utilize a series of partial test sessions, so that each test session is kept brief so as to not interfere unduly with the work schedule. This may encourage frequent testing, hopefully aiding in early detection of potential hearing loss. Additionally, methods of use are disclosed.
Abstract:
A concha-fit electronic hearing protection device including an eartip and an earpiece body. When the device is fitted in the ear of a user, the eartip externally occludes the ear canal and the earpiece body internally occludes the eartip.
Abstract:
The invention discloses a headset communication method under a strong-noise environment and a headset. The method comprises: using earplugs to reduce medium and high frequency noises entering an ear canal, using an external connection cavity in parallel connection with the ear canal to divert medium and low frequency noises; using an internal microphone to pick up the sound in the ear canal and an environmental noise signal entering the ear canal, using an external microphone to pick up the environmental noise signal, and taking the external microphone signal as reference signals to eliminate the noise element in the internal microphone signal and remain the voice element to obtain transmitting terminal signals of the headset; using sound dynamic compression technology to cut down and compensate the signals picked up by the external microphone in terms of sound pressure level such that the sound pressure range is compressed to a range acceptable by human ears and the signals picked up by the external microphone and the receiving terminal signal received by the headset are broadcast together through a receiver of the headset. By means of the technical scheme of the present invention, the functions of protecting hearing, enhancing voice and monitoring a three-dimensional environment can be achieved comprehensively under strong-noise environments.