摘要:
A semiconductor memory device having nonvolatile memory cells each formed of a MISFET having both a floating gate and a control gate and first and second semiconductor regions serving as the source and drain regions, respectively. In accordance with the method of manufacture thereof, an impurity, for example, arsenic, is introduced to form both the first and second semiconductor regions but with the second semiconductor region having a lower dose thereof so that the first semiconductor region formed attains a junction depth greater than that of the second semiconductor region, and both the first and second semiconductor regions have portions thereof extending under the floating gate electrode. The device and method therefor further feature the formation of MISFETs of peripheral circuits.
摘要:
A semiconductor memory device having nonvolatile memory cells each formed of a MISFET having both a floating gate and a control gate and first and second semiconductor regions serving as the source and drain regions, respectively. In accordance with the method of manufacture thereof, an impurity, for example, arsenic, is introduced to form both the first and second semiconductor regions but with the second semiconductor region having a lower dose thereof so that the first semiconductor region formed attains a junction depth greater than that of the second semiconductor region, and both the first and second semiconductor regions have portions thereof extending under the floating gate electrode. The device and method therefor further feature the formation of MISFETs of peripheral circuits.
摘要:
A semiconductor memory device having nonvolatile memory cells each formed of a MISFET having both a floating gate and a control gate and first and second semiconductor regions serving as the source and drain regions, respectively. In accordance with the method of manufacture thereof, an impurity, for example, arsenic, is introduced to form both the first and second semiconductor regions but with the second semiconductor region having a lower dose thereof so that the first semiconductor region formed attains a junction depth greater than that of the second semiconductor region, and both the first and second semiconductor regions have portions thereof extending under the floating gate electrode. The device and method therefor further feature the formation of MISFETs of peripheral circuits.
摘要:
A semiconductor memory device having nonvolatile memory cells each formed of a MISFET having both a floating gate and a control gate and first and second semiconductor regions serving as the source and drain regions, respectively. In accordance with the method of manufacture thereof, an impurity, for example, arsenic, is introduced to form both the first and second semiconductor regions but with the second semiconductor region having a lower dose thereof so that the first semiconductor region formed attains a junction depth greater than that of the second semiconductor region, and both the first and second semiconductor regions have portions thereof extending under the floating gate electrode. The device and method therefor further feature the formation of MISFETs of peripheral circuits.
摘要:
A semiconductor memory device having nonvolatile memory cells each formed of a MISFET having both a floating gate and a control gate and first and second semiconductor regions serving as the source and drain regions, respectively. In accordance with the method of manufacture thereof, an impurity, for example, arsenic, is introduced to form both the first and second semiconductor regions but with the second semiconductor region having a lower dose thereof so that the first semiconductor region formed attains a junction depth greater than that of the second semiconductor region, and both the first and second semiconductor regions have portions thereof extending under the floating gate electrode. The device and method therefor further feature the formation of MISFETs of peripheral circuits.
摘要:
A semiconductor memory device having nonvolatile memory cells of a single-element type. The nonvolatile memory cells have a floating gate electrode insulatedly on a main surface of a semiconductor substrate and a control gate electrode on the floating gate via a second gate insulating film. An impurity, for example, arsenic, is introduced in self-alignment with the pair of opposing end sides of the control gate electrode to form both the first and second semiconductor regions but, however, a lower dose of arsenic is introduced in the formation of the second semiconductor region. In accordance with the scheme, the first semiconductor region is formed to have a junction depth greater than the junction depth associated with the second semiconductor region and both the first and second semiconductor regions have portions thereof extending under the floating gate electrode. Moreover, carriers which are stored in the floating gate electrode are transferred therefrom to the first semiconductor region by tunneling through the insulating film beneath the floating gate electrode.
摘要:
A method of manufacturing a semiconductor memory device having non-volatile memory elements or memory cells of a single-element type. The method provides for the formation of a floating gate electrode on a main surface of a semiconductor substrate and a control gate electrode on the floating gate electrode via a second gate insulating film. In accordance with the method, an impurity is introduced in self-alignment with one of a pair of opposing end portions of the control gate electrode to form a first semiconductor region, and on the second of the opposing end portions of the control gate electrode of the memory cell, the same impurity, for example, arsenic, but, however, of a lower dose is introduced in self-alignment to form a second semiconductor region. In accordance with the formation of the first semiconductor region, the impurity is selectively introduced into the substrate by using a mask layer which covers a portion of the main surface of the substrate where the second semiconductor region is to be formed. In accordance with such manufactured memory cells, carriers which are stored in the floating gate electrode are transferred therefrom to the first semiconductor region by tunneling through the insulating film underlying the floating gate electrode. The first semiconductor region is formed so as to extend in an overlapping relation with the floating gate electrode by a greater amount than that of the second semiconductor region.
摘要:
A semiconductor memory device having nonvolatile memory cells each formed of a MISFET having both a floating gate and a control gate and first and second semiconductor regions serving as the source and drain regions, respectively. In accordance with the method of manufacture thereof, an impurity, for example, arsenic, is introduced to form both the first and second semiconductor regions but with the second semiconductor region having a lower dose thereof so that the first semiconductor region formed attains a junction depth greater than that of the second semiconductor region, and both the first and second semiconductor regions have portions thereof extending under the floating gate electrode. The device and method therefor further feature the formation of MISFETs of peripheral circuits.
摘要:
A semiconductor integrated device having a non-volatile memory element or memory cell of a single-element type in a non-volatile memory circuit employing a field effect transistor which has, in addition to a floating gate electrode for storage of information and a controlling gate electrode, a source which includes a heavily doped region having a depth into the semiconductor substrate extending from the major surface thereof which is large. The single-element type field effect transistor, furthermore, has a drain which includes a lightly doped region which has a depth extending into the semiconductor substrate from the major surface thereof which is small.
摘要:
A semiconductor integrated device having a non-volatile memory element or memory cell of a single-element type in a non-volatile memory circuit employing a field effect transistor which has, in addition to a floating gate electrode for storage of information and a controlling gate electrode, a source which includes a heavily doped region having a depth into the semiconductor substrate extending from the major surface thereof which is large. The single-element type field effect transistor, furthermore, has a drain which includes a lightly doped region which has a depth extending into the semiconductor substrate from the major surface thereof which is small.