摘要:
A multi-level non-volatile memory transistor is formed in a semiconductor substrate. A conductive polysilicon control gate having opposed sidewalls is insulatively spaced just above the substrate. Conductive polysilicon spacers are separated from the opposed sidewalls by thin tunnel oxide. Source and drain implants are beneath or slightly outboard of the spacers. Insulative material is placed over the structure with a hole cut above the control gate for contact by a gate electrode connected to, or part of, a conductive word line. Auxillary low voltage transistors which may be made at the same time as the formation of the memory transistor apply opposite phase clock pulses to source and drain electrodes so that first one side of the memory transistor may be written to, or read, then the other side.
摘要:
A semiconductor device of this invention is a single-layer gate nonvolatile semiconductor memory in which a floating gate having a predetermined shape is formed on a semiconductor substrate. This floating gate opposes a diffusion layer serving as a control gate via a gate oxide film and is capacitively coupled with the diffusion layer by using the gate oxide film as a dielectric film. The diffusion layer immediately below the dielectric film is insulated from the semiconductor substrate by an insulating film such as a silicon oxide film. A pair of diffusion layers are formed in surface regions of the semiconductor substrate on the two sides of the floating gate extending on a tunnel oxide film. This invention can realize a reliable semiconductor device which is a single-layer gate semiconductor device by which a low-cost process is possible, has a control gate which can well withstand a high voltage applied when data is erased or written, and can prevent an operation error by minimizing variations in the threshold value.
摘要:
A non-volatile memory (NVM) cell, which uses a storage dielectric as the storage element, has a top dielectric between a gate and the storage dielectric and a bottom dielectric between a semiconductor substrate and the storage dielectric. The top dielectric includes a relatively thick and high k dielectric layer and an interfacial layer. The interfacial layer is very thin and has a higher k than silicon oxide. The bottom dielectric layer is preferably silicon oxide because of its interfacial and tunneling properties. The cell thus has benefits resulting from a well-passivated, high k top dielectric in combination with a bottom dielectric of silicon oxide.
摘要:
A non-volatile memory cell includes a first insulating layer over a substrate region, and a floating gate. The floating gate includes a first polysilicon layer over the first insulating layer and a second polysilicon layer over and in contact with the first polysilicon layer. The first polysilicon layer has a predetermined doping concentration and the second polysilicon layer has a doping concentration which decreases in a direction away from an interface between the first and second polysilicon layers. A second insulating layer overlies and is in contact with the second polysilicon layer. A control gate includes a third polysilicon layer over and in contact with the second insulating layer, and a fourth polysilicon layer over and in contact with the third polysilicon layer. The fourth polysilicon layer has a predetermined doping concentration, and the third polysilicon layer has a doping concentration which decreases in a direction away from an interface between the third and fourth polysilicon layers.
摘要:
Embodiments in accordance with the present invention provide for forming floating gate transistor structures as well as the structures so formed. An exemplary method provides a substrate encompassing semiconductive material. A first layer is formed over the semiconductive material. At least one pair of spaced shallow trench isolation (STI) structures are formed extending through the first layer and into the semiconductive material, and at least a portion of the first layer between the spaced STI structures is removed effective to form a recess there between. The recess is at least partially filled by forming a conductive floating gate material therein and a control gate is formed operatively over the conductive floating gate material to form the floating gate transistor.
摘要:
A floating gate transistor includes a first floating gate portion extending horizontally over a channel region. A second floating gate portion vertically extends upwardly from the first floating gate portion to be coupled to a control gate. The second floating gate portion can be formed in a container shape with the control gate formed within the container floating gate. The transistor allows the die real estate occupied by the transistor to be reduced while maintaining the coupling area between the floating and control gates. The transistor can be used in non-volatile memory devices, such as flash memory.
摘要:
An array of non-volatile memory cells is provided for storing a data pattern and reproducing the data pattern. The array comprises a semiconductor substrate moderately doped with a first type of impurity to enhance conductivity. A plurality of bit lines within the substrate define a plurality of vertical channel regions spaced there between. Each bit line comprises the substrate doped with a second type of impurity to enhance conductivity. Each channel comprises a moderately doped channel region portion adjacent to a first one of the bit lines and a slightly more heavily doped channel region portion adjacent to a second one of the bit lines. A plurality of parallel spaced apart semiconductor word lines are positioned over the substrate and separated from the substrate by an insulator film, a charge storage region, and a second insulator film. An array control circuit is coupled to each bit line and each word line to provide a drain bit line programming potential the second one of the bit line diffusions to accelerating electrons from the first one of the bit line diffusions towards the second one of the bit line diffusions and to provide a word line programming potential to a selected one of the word lines to divert the accelerated electrons from the channel region beneath the selected word line across the insulator film into the charge storage region.
摘要:
A flash memory with a self-aligned spilt gate and the methods for fabricating and operating the same are described. The flash cell consists of a substrate having a deep n-type well and a shallow p-type well in the deep n-type well therein, a control gate structure on the gate oxide layer located on the p-type shallow well, a floating gate on one sidewall of the control gate and over the substrate, a tunnel oxide layer between the control gate and the floating gate and between the floating gate and the substrate, a drain and a common source disposed beneath each side of the control gate in the substrate, wherein the depth of the drain and the common source are larger than the depth of the shallow p-type well, a pocket p-type well in the substrate around the drain and electrically connecting with the shallow p-type well.
摘要:
Semiconductor devices are disclosed utilizing at least one polysilicon structure in a stacked gate region according to the present invention. The stacked gate region includes a substrate, at least one trench, an oxide layer, at least one floating gate layer and the at least one polysilicon structure. The at least one polysilicon structure is formed adjacent to vertical edges of the at least one floating gate layer and above the oxide layer. The polysilicon structure, which includes polysilicon wings and ears, is used to increase the capacitive coupling of memory cells in memory devices, thereby allowing for further reduction or scaling in the size of memory cells and devices.
摘要:
An integrated circuit metal oxide semiconductor device comprises a gate region and a dielectric layer positioned therein, wherein the dielectric layer is substantially free of germanium diffused therein from a silicon germanium layer of the device. The method comprises depositing a dummy replacement gate, subjecting the device to high temperature processing, removing the dummy gate, and then depositing a dielectric material and a final gate material within the formed gate region. Because the dielectric material is deposited after high temperature processing of the device, there is negligible diffusion of germanium into the dielectric material.