Abstract:
A split gate flash memory cell comprising a semiconductor substrate having a first insulating layer thereon and a floating gate with a first width is disclosed. The cell further comprises a second insulating layer, a control gate and a cap on the floating gate in sequence. The cap layer, the control gate and the second insulating layer have a same second width less than the first width. The cell also comprises a third insulating layer over the semiconductor substrate, the sidewalls of the control gate, the second insulating layer, the floating gate, and the first insulating layer. In addition, an erase gate formed on the third insulating layer is provided.
Abstract:
A split gate flash memory cell comprising a semiconductor substrate having a first insulating layer thereon and a floating gate with a first width is disclosed. The cell further comprises a second insulating layer, a control gate and a cap on the floating gate in sequence. The cap layer, the control gate and the second insulating layer have a same second width less than the first width. The cell also comprises a third insulating layer over the semiconductor substrate, the sidewalls of the control gate, the second insulating layer, the floating gate, and the first insulating layer. In addition, an erase gate formed on the third insulating layer is provided.
Abstract:
Structures and methods for NOR flash memory cells, arrays and systems are provided. The NOR flash memory cell includes a vertical floating gate transistor extending outwardly from a substrate. The floating gate transistor having a first source/drain region, a second source/drain region, a channel region between the first and the second source/drain regions, a floating gate separated from the channel region by a gate insulator, and a control gate separated from the floating gate by a gate dielectric. A sourceline is formed in a trench adjacent to the vertical floating gate transistor and coupled to the first source/drain region. A transmission line coupled to the second source/drain region. And, a wordline is coupled to the control gate perpendicular to the sourceline.
Abstract:
One aspect of the present subject matter relates to a one-device non-volatile memory cell. The memory cell includes a body region, a first diffusion region and a second diffusion region formed in the body region. A channel region is formed in the body region between the first diffusion region and the second diffusion region. The memory cell includes a gate insulator stack formed above the channel region, and a gate to connect to a word line. The gate insulator stack includes a floating plate to selectively hold a charge. The floating plate is connected to the second diffusion region. The memory cell includes a diode that connects the body region to the second diffusion region such that the floating plate is charged when the diode is reversed biased. Other aspects are provided herein.
Abstract:
Structures and methods for NOR flash memory cells, arrays and systems are provided. The NOR flash memory cell includes a vertical floating gate transistor extending outwardly from a substrate. The floating gate transistor having a first source/drain region, a second source/drain region, a channel region between the first and the second source/drain regions, a floating gate separated from the channel region by a gate insulator, and a control gate separated from the floating gate by a gate dielectric. A sourceline is formed in a trench adjacent to the vertical floating gate transistor and coupled to the first source/drain region. A transmission line coupled to the second source/drain region. And, a wordline is coupled to the control gate perpendicular to the sourceline.
Abstract:
Structures and methods for NOR flash memory cells, arrays and systems are provided. The NOR flash memory cell includes a vertical floating gate transistor extending outwardly from a substrate. The floating gate transistor having a first source/drain region, a second source/drain region, a channel region between the first and the second source/drain regions, a floating gate separated from the channel region by a gate insulator, and a control gate separated from the floating gate by a gate dielectric. A sourceline is formed in a trench adjacent to the vertical floating gate transistor and coupled to the first source/drain region. A transmission line coupled to the second source/drain region. And, a wordline is coupled to the control gate perpendicular to the sourceline.
Abstract:
One aspect of the present subject matter relates to a one-device non-volatile memory cell. The memory cell includes a body region, a first diffusion region and a second diffusion region formed in the body region. A channel region is formed in the body region between the first diffusion region and the second diffusion region. The memory cell includes a gate insulator stack formed above the channel region, and a gate to connect to a word line. The gate insulator stack includes a floating plate to selectively hold a charge. The floating plate is connected to the second diffusion region. The memory cell includes a diode that connects the body region to the second diffusion region such that the floating plate is charged when the diode is reversed biased. Other aspects are provided herein.
Abstract:
Structures and methods for NOR flash memory cells, arrays and systems are provided. The NOR flash memory cell includes a vertical floating gate transistor extending outwardly from a substrate. The floating gate transistor having a first source/drain region, a second source/drain region, a channel region between the first and the second source/drain regions, a floating gate separated from the channel region by a gate insulator, and a control gate separated from the floating gate by a gate dielectric. A sourceline is formed in a trench adjacent to the vertical floating gate transistor and coupled to the first source/drain region. A transmission line coupled to the second source/drain region. And, a wordline is coupled to the control gate perpendicular to the sourceline.
Abstract:
A new split gate structure is disclosed with improved programming efficiency. A silicon region, extending to the surface of a semiconductor substrate, has parallel source/drain regions and electrical connecting regions disposed over the source/drain region. A multiplicity of structures is situated between source drain regions. Each structure is composed of two tower structures and intervening oxide layers. A floating gate tower, in which a gate oxide layer separates a floating gate from said silicon region and an insulating layer separates said floating gate from a top gate, with a nitride layer disposed over the top gate. And a selected gate tower in which a silicon pedestal is in intimate electrical contact with said silicon region and said silicon pedestal is separated from a selected gate by an insulating layer. Along the interfacing sidewalls, the silicon pedestal is separated from the floating gate by a first intervening oxide layer and the selected gate is separated from the floating gate tower by a second intervening oxide layer.
Abstract:
A method of manufacturing a semiconductor memory device having nonvolatile memory cells each formed of a MISFET having both a floating gate and a control gate and first and second semiconductor regions. By this method, an impurity, for example, arsenic, is introduced to form both the first and second semiconductor regions but, however, a lower dose of arsenic is introduced in the formation of the second semiconductor region. The first semiconductor region is formed to have a junction depth greater than that of the second semiconductor region, and both the first and second semiconductor regions have portions thereof extending under the floating gate electrode. Carriers stored in the floating gate electrode are transferred between the floating gate electrode and the first semiconductor region by tunneling through the insulating film beneath the floating gate electrode. The method further features the formation of MISFETs of peripheral circuits.