Abstract:
In a communication apparatus on a network where communication apparatuses perform direct communication with each other, a network management apparatus for managing the network based on message information transmitted and received on the network is determined. When the communication apparatus itself is determined as the network management apparatus, the apparatus collects information indicating device capabilities from other communication apparatuses. On the other hand, the communication apparatus receives information indicating device capabilities from another communication apparatus when the other communication apparatus is determined as the network management apparatus.
Abstract:
In a communication apparatus on a network where communication apparatuses perform direct communication with other apparatuses, a providing apparatus that provides communication parameters, and a reception apparatus that receives the communication parameters are determined based on information indicating the capabilities of communication apparatuses existing on the network, and a transfer direction of the communication parameters is notified to the providing apparatus and the reception apparatus thereby determined.
Abstract:
In an ad hoc mode based on IEEE802.11 standard, when a wireless terminal performs a power save operation to create a network, and a network identifier identical to that of the network to be created is present, the wireless terminal does not join the network. When the wireless terminal is to join the network, and the network identifier identical to that of the network which the wireless terminal is to join is not present, the wireless terminal does not join any network. In this method, reliable connectivity can be obtained in the ad hoc mode which is not defined in the IEEE802.11 standard in detail.
Abstract:
In a communication system including plural communication apparatuses that communicate each other using a single communication path, the state of the communication path is detected for communication. If the communication path is busy, a first control method is performed for controlling access to the communication path using a back off time selected at random. A second control method secures the communication path by transmitting and receiving the predetermined signal at transmission of a signal so as to control access to the communication path. In accordance with the kind of the signal to be transmitted, the first or the second control method is selected for communication. Thus, plural communication apparatuses can perform efficient communication.
Abstract:
A receiving apparatus includes a base-band conversion circuit, a synchronizing circuit/code generator and a demodulator. The base-band conversion circuit converts a received signal into a base-band signal. The synchronizing circuit/code generator detects a spread code included in the received signal to generate a plurality of spread codes in synchronization with the spread code included in the received signal. The demodulator uses the plurality of spread codes supplied by the synchronizing circuit/code generator to demodulate the base-band signal.
Abstract:
In implementing data transfer using noncontact close proximity transfer, the user operability is improved. The invention includes a communication system having a DSC and printer. Each of the DSC and printer includes a noncontact close proximity transfer function unit which executes, when the DSC and printer are located within a communicable range, connection processing for establishing a connection state in a first communication layer, a print image transfer processing unit which executes, when the connection state in the first communication layer is established, authentication processing for checking whether a connection state in a second communication layer has been established, and executes, when authentication fails, connection processing for establishing the connection state in the second communication layer, and a link control unit which transfers data when authentication succeeds or when the connection state in the second communication layer is established.
Abstract:
In an ad hoc mode based on IEEE802.11 standard, when a wireless terminal performs a power save operation to create a network, and a network identifier identical to that of the network to be created is present, the wireless terminal does not join the network. When the wireless terminal is to join the network, and the network identifier identical to that of the network which the wireless terminal is to join is not present, the wireless terminal does not join any network. In this method, reliable connectivity can be obtained in the ad hoc mode which is not defined in the IEEE802.11 standard in detail.
Abstract:
A device capability attribute regarding a setting on communication parameters, and provision attribute information indicative of whether or not a communication terminal is in a state that it can provide communication parameters to another communication terminal are stored in advance. The communication terminal, where the device capability attribute has at least a provision capability of the communication parameters, is selected as a provision device. In a case where there are plural communication terminals where the device capability attribute has a communication parameter provision capability, a communication terminal where the device capability attribute has the communication parameter provision capability only is preferentially selected. In a case where the device capability attributes of respective communication terminals are equal, a communication terminal storing the provision attribute information indicative of the state that it can provide the communication parameters is selected as a provision device.
Abstract:
A communication apparatus includes a participation unit, a formation unit, a management unit, and a notification unit. The participation unit participates in a first network formed by a first base station. The formation unit forms a second network as a second base station. The management unit manages a power mode of another communication apparatus participating in the second network. Moreover, when the participation unit participates in the first network and the formation unit forms the second network, the notification unit notifies the first base station of a change of a power mode of the communication apparatus according to the power mode managed by the management unit.
Abstract:
A wireless communication apparatus having a first wireless communication unit for performing RFID communication and a second wireless communication unit for performing data transfer executes authentication processing by providing authentication information using communication by the first wireless communication unit, and detects the result of authentication processing. Data transfer using the second wireless communication unit is allowed if authentication success is detected by the authentication processing, and supply of power for the second wireless communication unit is stopped if authentication failure is detected.