摘要:
Methods for recognizing gestures using adaptive multi-sensor gesture recognition are described. In some embodiments, a gesture recognition system receives a plurality of sensor inputs from a plurality of sensor devices and a plurality of confidence thresholds associated with the plurality of sensor inputs. A confidence threshold specifies a minimum confidence value for which it is deemed that a particular gesture has occurred. Upon detection of a compensating event, such as excessive motion involving one of the plurality of sensor devices, the gesture recognition system may modify the plurality of confidence thresholds based on the compensating event. Subsequently, the gesture recognition system generates a multi-sensor confidence value based on whether at least a subset of the plurality of confidence thresholds has been satisfied. The gesture recognition system may also modify the plurality of confidence thresholds based on the plugging and unplugging of sensor inputs from the gesture recognition system.
摘要:
Methods for recognizing gestures using adaptive multi-sensor gesture recognition are described. In some embodiments, a gesture recognition system receives a plurality of sensor inputs from a plurality of sensor devices and a plurality of confidence thresholds associated with the plurality of sensor inputs. A confidence threshold specifies a minimum confidence value for which it is deemed that a particular gesture has occurred. Upon detection of a compensating event, such as excessive motion involving one of the plurality of sensor devices, the gesture recognition system may modify the plurality of confidence thresholds based on the compensating event. Subsequently, the gesture recognition system generates a multi-sensor confidence value based on whether at least a subset of the plurality of confidence thresholds has been satisfied. The gesture recognition system may also modify the plurality of confidence thresholds based on the plugging and unplugging of sensor inputs from the gesture recognition system.
摘要:
Methods for recognizing gestures using adaptive multi-sensor gesture recognition are described. In some embodiments, a gesture recognition system receives a plurality of sensor inputs from a plurality of sensor devices and a plurality of confidence thresholds associated with the plurality of sensor inputs. A confidence threshold specifies a minimum confidence value for which it is deemed that a particular gesture has occurred. Upon detection of a compensating event, such as excessive motion involving one of the plurality of sensor devices, the gesture recognition system may modify the plurality of confidence thresholds based on the compensating event. Subsequently, the gesture recognition system generates a multi-sensor confidence value based on whether at least a subset of the plurality of confidence thresholds has been satisfied. The gesture recognition system may also modify the plurality of confidence thresholds based on the plugging and unplugging of sensor inputs from the gesture recognition system.
摘要:
Methods for enabling hands-free selection of virtual objects are described. In some embodiments, a gaze swipe gesture may be used to select a virtual object. The gaze swipe gesture may involve an end user of a head-mounted display device (HMD) performing head movements that are tracked by the HMD to detect whether a virtual pointer controlled by the end user has swiped across two or more edges of the virtual object. In some cases, the gaze swipe gesture may comprise the end user using their head movements to move the virtual pointer through two edges of the virtual object while the end user gazes at the virtual object. In response to detecting the gaze swipe gesture, the HMD may determine a second virtual object to be displayed on the HMD based on a speed of the gaze swipe gesture and a size of the virtual object.
摘要:
Methods for enabling hands-free selection of virtual objects are described. In some embodiments, a gaze swipe gesture may be used to select a virtual object. The gaze swipe gesture may involve an end user of a head-mounted display device (HMD) performing head movements that are tracked by the HMD to detect whether a virtual pointer controlled by the end user has swiped across two or more edges of the virtual object. In some cases, the gaze swipe gesture may comprise the end user using their head movements to move the virtual pointer through two edges of the virtual object while the end user gazes at the virtual object. In response to detecting the gaze swipe gesture, the HMD may determine a second virtual object to be displayed on the HMD based on a speed of the gaze swipe gesture and a size of the virtual object.
摘要:
Methods for enabling hands-free selection of virtual objects are described. In some embodiments, a gaze swipe gesture may be used to select a virtual object. The gaze swipe gesture may involve an end user of a head-mounted display device (HMD) performing head movements that are tracked by the HMD to detect whether a virtual pointer controlled by the end user has swiped across two or more edges of the virtual object. In some cases, the gaze swipe gesture may comprise the end user using their head movements to move the virtual pointer through two edges of the virtual object while the end user gazes at the virtual object. In response to detecting the gaze swipe gesture, the HMD may determine a second virtual object to be displayed on the HMD based on a speed of the gaze swipe gesture and a size of the virtual object.
摘要:
Technology is described for (3D) space carving of a user environment based on movement through the user environment of one or more users wearing a near-eye display (NED) system. One or more sensors on the near-eye display (NED) system provide sensor data from which a distance and direction of movement can be determined. Spatial dimensions for a navigable path can be represented based on user height data and user width data of the one or more users who have traversed the path. Space carving data identifying carved out space can be stored in a 3D space carving model of the user environment. The navigable paths can also be related to position data in another kind of 3D mapping like a 3D surface reconstruction mesh model of the user environment generated from depth images.
摘要:
Methods for enabling hands-free selection of objects within an augmented reality environment are described. In some embodiments, an object may be selected by an end user of a head-mounted display device (HMD) based on detecting a vestibulo-ocular reflex (VOR) with the end user's eyes while the end user is gazing at the object and performing a particular head movement for selecting the object. The object selected may comprise a real object or a virtual object. The end user may select the object by gazing at the object for a first time period and then performing a particular head movement in which the VOR is detected for one or both of the end user's eyes. In one embodiment, the particular head movement may involve the end user moving their head away from a direction of the object at a particular head speed while gazing at the object.
摘要:
Methods for generating and displaying images associated with one or more virtual objects within an augmented reality environment at a frame rate that is greater than a rendering frame rate are described. The rendering frame rate may correspond with the minimum time to render images associated with a pose of a head-mounted display device (HMD). In some embodiments, the HMD may determine a predicted pose associated with a future position and orientation of the HMD, generate a pre-rendered image based on the predicted pose, determine an updated pose associated with the HMD subsequent to generating the pre-rendered image, generate an updated image based on the updated pose and the pre-rendered image, and display the updated image on the HMD. The updated image may be generated via a homographic transformation and/or a pixel offset adjustment of the pre-rendered image.
摘要:
Methods for automatically generating a texture exemplar that may be used for rendering virtual objects that appear to be made from the texture exemplar are described. In some embodiments, a head-mounted display device (HMD) may identify a real-world object within an environment, acquire a three-dimensional model of the real-world object, determine a portion of the real-world object from which a texture exemplar is to be generated, capture one or more images of the portion of the real-world object, determine an orientation of the real-world object, and generate the texture exemplar using the one or more images, the three-dimensional model, and the orientation of the real-world object. The HMD may then render and display images of a virtual object such that the virtual object appears to be made from a virtual material associated with the texture exemplar.