Abstract:
A solar cell concentrator structure includes a first concentrator element having a first aperture region and a first exit region including a first back surface region and a first corner region. The structure also includes a second concentrator element integrally formed with the first concentrator element. The second concentrator element includes a second aperture region and a second exit region-including a second back surface region and a second corner region. Additionally, the structure includes a first radius of curvature of 0.10 mm and less characterizing the first corner structure and the second corner structure, a first coupling region between the first exit region and a first surface region of a first photovoltaic device. The structure further includes a second radius of curvature of 0.10 mm and less characterizing a region between the first concentrator element and the second concentrator element.
Abstract:
A method for manufacturing an integrated solar cell and concentrator. The method includes providing a first photovoltaic region and a second photovoltaic region disposed within a first mold member. A second mold member is coupled to the first mold member to form a cavity region. The cavity region forms a first concentrator region overlying a vicinity of the first photovoltaic region and a second concentrator region overlying a vicinity of the second photovoltaic region. The method includes transferring a molding compound in a fluidic state into the cavity region to fill the cavity region with the molding compound and initiating a curing process of the molding compound to form a first concentrator element and a second concentrator element overlying the respective photovoltaic regions.
Abstract:
A solar cell concentrator structure includes a first concentrator element having a first aperture region and a first exit region including a first back surface region and a first corner region. The structure also includes a second concentrator element integrally formed with the first concentrator element. The second concentrator element includes a second aperture region and a second exit region-including a second back surface region and a second corner region. Additionally, the structure includes a first radius of curvature of 0.25 mm and less characterizing the first corner structure and the second corner structure, a first coupling region between the first exit region and a first surface region of a first photovoltaic device. The structure further includes a second radius of curvature of 0.15 mm and less characterizing a region between the first concentrator element and the second concentrator element.
Abstract:
A solar panel apparatus and method. The apparatus has an optically transparent member comprising a predetermined thickness and an aperture surface region. The apparatus has a solar cell coupled to a portion of the optically transparent member. In a specific embodiment, the solar cell includes a transparent polymeric member and a plurality of photovoltaic regions provided within a portion of the transparent polymeric member. In a specific embodiment, the plurality of photovoltaic regions occupies at least about 10 percent of the aperture surface region of the transparent polymeric member and less than about 80% of the aperture surface region of the transparent polymeric member.
Abstract:
A solar panel apparatus and method. The apparatus has an optically transparent member comprising a predetermined thickness and an aperture surface region. The apparatus has a solar cell coupled to a portion of the optically transparent member. In a specific embodiment, the solar cell includes a transparent polymeric member and a plurality of photovoltaic regions provided within a portion of the transparent polymeric member. In a specific embodiment, the plurality of photovoltaic regions occupies at least about 10 percent of the aperture surface region of the transparent polymeric member and less than about 80% of the aperture surface region of the transparent polymeric member.
Abstract:
A solar cell concentrator structure includes a first concentrator element having a first aperture region and a first exit region including a first back surface region and a first corner region. The structure also includes a second concentrator element integrally formed with the first concentrator element. The second concentrator element includes a second aperture region and a second exit region-including a second back surface region and a second corner region. Additionally, the structure includes a first radius of curvature of 0.10 mm and less characterizing the first corner structure and the second corner structure, a first coupling region between the first exit region and a first surface region of a first photovoltaic device. The structure further includes a second radius of curvature of 0.10 mm and less characterizing a region between the first concentrator element and the second concentrator element.
Abstract:
A solar cell concentrator structure includes a first concentrator element having a first aperture region and a first exit region including a first back surface region and a first corner region. The structure also includes a second concentrator element integrally formed with the first concentrator element. The second concentrator element includes a second aperture region and a second exit region-including a second back surface region and a second corner region. Additionally, the structure includes a first radius of curvature of 0.25 mm and less characterizing the first corner structure and the second corner structure, a first coupling region between the first exit region and a first surface region of a first photovoltaic device. The structure further includes a second radius of curvature of 0.15 mm and less characterizing a region between the first concentrator element and the second concentrator element.
Abstract:
A solar cell concentrator structure includes a first concentrator element having a first aperture region and a first exit region including a first back surface region and a first corner region. The structure also includes a second concentrator element integrally formed with the first concentrator element. The second concentrator element includes a second aperture region and a second exit region-including a second back surface region and a second corner region. Additionally, the structure includes a first radius of curvature of 0.25 mm and less characterizing the first corner structure and the second corner structure, a first coupling region between the first exit region and a first surface region of a first photovoltaic device. The structure further includes a second radius of curvature of 0.15 mm and less characterizing a region between the first concentrator element and the second concentrator element.
Abstract:
A glass concentrator for manufacture of solar energy conversion module is provided including a webbing that has a load sustenance characteristic and a hail impact resistance characteristic based on a first thickness of the webbing. The concentrator also includes a plurality of elongated concentrating elements integrally formed with the webbing. Each of the elongated concentrating elements has an aperture region, an exit region and two side regions, which bears a geometric concentration characteristic provided by a highly reflective side regions and an aperture-to-exit scale ratio in a range from about 1.8 to about 4.5. The glass concentrator can be attached with a plurality of photovoltaic strips cumulatively on each and every exit regions and clamped with a rigid or flexible back cover member to form a solar concentrator module for converting sunlight to electric energy. The solar concentrator module based on certain embodiments meets the industrial qualification standards.
Abstract:
The invention provides a solar concentrator structure including a first concentrating element. The first concentrating element includes a first aperture region, a first exit region, a first side and a second side. The solar concentrator structure further includes a second or more concentrating elements integrally coupled with the first concentrating element in a parallel manner. The second concentrating element includes a second aperture region, a second exit region, the third side, and a fourth side. The third side joins with the second side to form an apex notch structure characterized by a radius of curvature. Additionally, the solar concentrator structure includes a separation region by a width separating the first exit region from the second exit region and a triangular region including the apex notch structure and a base defined by the separation region and a refractive index of about 1 characterizing the triangular region.