摘要:
A solar module includes a photovoltaic region having an elongated shape. At least one bus bar pad overlies portions of the photovoltaic region. The solar module includes an electrically conductive region configured along a periphery region of the photovoltaic region to expose an interior surface region of the photovoltaic strip. A finger structure configured to conduct electrical current generated in the photovoltaic regions overlies the electrically conductive region.
摘要:
A solar concentrator structure including a plurality of glass concentrator elements with a notch design. According to an embodiment, the present invention provides a solar cell concentrator structure. The structure includes an outside surface. The structure also includes an inside surface, the inside surface being substantially flat. The structure includes a first concentrator element integrally formed on the outside surface, the first concentrator element having a first curved surface, the curved surface being characterized by a radius of at least 1 mm, the curved surface having a first flat region of at least 0.25 mm, the flat region being at least 4 mm from the inside surface. The structure includes a second concentrator element integrally formed with the first concentrator element and the outside surface, the second concentrator element including a second curved surface and a second flat region.
摘要:
A method and system for manufacturing an integrated concentrator photovoltaic device is disclosed. In an embodiment, the invention includes a one step process using a sheet of coupling material provided in a pre-arranged pattern to couple an array of photovoltaic members to an array of respective optical concentrating members. In another embodiment, the invention includes an integrated concentrator photovoltaic device made by coupling a photovoltaic member and an optical concentrating member together through an encapsulant or coupling layer formed from a sheet member of coupling materials possessing a pre-arranged pattern
摘要:
A method of forming a solar device. The method includes providing one or more photovoltaic cells having a front surface region and a back surface region. The method includes providing a first conductor element having a first side operably coupled to a first region of the front surface region of the one or more photovoltaic cells and a second side. In a specific embodiment, the conductor element includes a first anisotropic conducting tape material or a first conducting tape material, the first conducting element having a first thickness, a first length, and a first width. The method performs a bonding process to cause the first conductor element to conduct electric current in a first selected direction.
摘要:
A solar module includes a substrate member, a plurality of photovoltaic strips arranged in an array configuration overlying the substrate member, and a concentrator structure comprising extruded glass material operably coupled to the plurality of photovoltaic strips. A plurality of elongated convex regions are configured within the concentrator structure. The plurality of elongated convex regions are respectively coupled to the plurality of photovoltaic strips. Each of the plurality of elongated convex regions includes a length and a convex surface region characterized by a radius of curvature, each of the elongated convex regions being configured to have a magnification ranging from about 1.5 to about 5. A coating material rendering the glass self-cleaning overlies the plurality of elongated convex regions.
摘要:
A method for manufacturing an integrated solar cell and concentrator. The method includes providing a first photovoltaic region and a second photovoltaic region disposed within a first mold member. A second mold member is coupled to the first mold member to form a cavity region. The cavity region forms a first concentrator region overlying a vicinity of the first photovoltaic region and a second concentrator region overlying a vicinity of the second photovoltaic region. The method includes transferring a molding compound in a fluidic state into the cavity region to fill the cavity region with the molding compound and initiating a curing process of the molding compound to form a first concentrator element and a second concentrator element overlying the respective photovoltaic regions.
摘要:
A method of producing a carrier wafer for an integrated circuit is disclosed. The method comprises the steps of providing a carrier wafer having a plurality of bump pads and a plurality of wire bond pads; providing a passivation layer on the carrier wafer; etching a passivation layer over at least a portion of the plurality of bump pads; applying solder bumps on the plurality of bump pads; and separately etching the passivation layer over at least a portion of the plurality of wire bond pads. An integrated circuit employing a flip chip is also disclosed.
摘要:
A TAB device (10) is coupled to a circuit board (12). The TAB device (10) includes a semiconductor die (11) having leads (18) extending therefrom. A material layer (30), typically a polyimide layer, covers the inward portion of the leads (18) to maintain leading position during attachment of the TAB device (10) to the circuit board (12). Prior to attachment, a backside encapsulation region (40) is applied to the backside of the TAB device (10), sealing the backside of the leads (18). The backside encapsulation material is selected to have a coefficient of thermal expansion similar to the coefficient of thermal expansion of the first material layer (18). The backside encapsulation material is selected to have a coefficient of thermal expansion similar to the coefficient of thermal expansion of the first material layer (30), to prevent excessive warpage. During attachment, migration of the die attach layer (22) towards the leads will be stopped by the backside encapsulation region (40), preventing the die attach material from shorting the leads (18) of the device (10).
摘要:
A TAB device (10) is coupled to a circuit board (12). The TAB device (10) includes a semiconductor die (11) having leads (18) extending therefrom. A material layer (30), typically a polyimide layer, covers the inward portion of the leads (18) to maintain leading position during attachment of the TAB device (10) to the circuit board (12). Prior to attachment, a backside encapsulation region (40) is applied to the backside of the TAB device (10), sealing the backside of the leads (18). The backside encapsulation material is selected to have a coefficient of thermal expansion similar to the coefficient of thermal expansion of the first material layer (18). The backside encapsulation material is selected to have a coefficient of thermal expansion similar to the coefficient of thermal expansion of the first material layer (30), to prevent excessive warpage. During attachment, migration of the die attach layer (22) towards the leads will be stopped by the backside encapsulation region (40), preventing the die attach material from shorting the leads (18) of the device (10).
摘要:
A method for forming a laminated photovoltaic structure includes providing a sheet of transparent material having light concentrating features, disposing adhesive material adjacent to the sheet of transparent material, disposing photovoltaic strips adjacent to the adhesive material, wherein the photovoltaic strips are positioned relative to the sheet of transparent material in response to exitant light characteristics of the light concentrating features, wherein photovoltaic strips are coupled via associated bus bars, wherein gap regions are located between bus bars of neighboring photovoltaic strips, disposing a rigid layer of material adjacent to the photovoltaic strips to form a composite photovoltaic structure; and thereafter laminating the composite photovoltaic structure to fill the gap regions with adhesive material and to form the laminated photovoltaic structure, wherein adhesive material adheres to the bus bars.