摘要:
The invention relates to an imaging apparatus (31) for imaging an object. A reconstruction unit (12) determines component projection data values, which correspond to, for example, a base material of the object, and reconstructs an image of the object based on the determined component projection data values. A component projection data value, which corresponds to a ray, is determined as a combination of weighted base functions, which depend on energy projection data values of the same ray and the orientation of the same ray. This allows considering a possible dependency of the corresponding decomposition on the orientation of the ray, thereby allowing the imaging apparatus to improve the quality of decomposing the provided energy projection data values into the component projection data values and thus of a finally reconstructed image of the object, which is reconstructed based on the component projection data values.
摘要:
A method includes analyzing a spectral projection image of a portion of a subject, generating a value quantifying an amount of a target specific contrast material in a region of interest of the spectral projection image, and generating a signal indicative of a presence of the target in response to the value satisfying a predetermined threshold level.
摘要:
An imaging system includes a radiation source (106, T1, T2, T3) that rotates about an examination region and emits radiation that traverses the examination region. The radiation source (106, T1, T2, T3) emits radiation having an energy spectrum that is selectively alternately switched between at least two different energy spectra during an imaging procedure. The system further includes an energy-resolving detector array (116, D1, D2, D3) that detects radiation traversing the examination region. The energy-resolving detector array (116, D1, D2, D3) resolves the detected radiation over at least two different energy ranges and produces energy-resolved output signals as a function of both emission energy spectrum and energy range. The system further includes a reconstructor (126) that performs a spectral reconstruction of the energy-resolved output signals. In another embodiment, the detector array (116) includes a photon-counting detector array (116).
摘要:
To mitigate the influence of charge sharing occurring in semiconductor detectors, an improved semiconductor detector (200) is provided, which comprises: a plurality of anodes (210) arranged to form at least one opening (230), each opening being formed by two anodes in the plurality of anodes; at least one cathode (220); a detector cell (240) located between the plurality of anodes and the at least one cathode; wherein the detector cell comprises at least one groove (250), each of the at least one groove having a first opening (252) aligned with one of the at least one opening being formed by two anodes in the plurality of anodes, each of the at least one groove extending towards the at least one cathode. By forming grooves in the detector cell, the charge cloud generated by a single photon can be received by a corresponding anode instead of several neighboring anodes, which thereby improves the spectral resolution and count rate of a semiconductor detector.
摘要:
To mitigate the influence of charge sharing occurring in semiconductor detectors, an improved semiconductor detector (200) is provided, which comprises: a plurality of anodes (210) arranged to form at least one opening (230), each opening being formed by two anodes in the plurality of anodes; at least one cathode (220); a detector cell (240) located between the plurality of anodes and the at least one cathode; wherein the detector cell comprises at least one groove (250), each of the at least one groove having a first opening (252) aligned with one of the at least one opening being formed by two anodes in the plurality of anodes, each of the at least one groove extending towards the at least one cathode. By forming grooves in the detector cell, the charge cloud generated by a single photon can be received by a corresponding anode instead of several neighboring anodes, which thereby improves the spectral resolution and count rate of a semiconductor detector.
摘要:
The invention relates to a projection system for producing attenuation components of projection data of a region of interest. The projection system comprises a projection data providing unit (1, 2, 6, 7, 8) for providing energy-dependent projection data of the region of interest. The projection system further comprises a calculation unit (12) for calculating different attenuation components generated by different attenuation effects from the energy-dependent projection data, wherein the different attenuation components contribute to the projection data and a transformation unit (13) for transforming the attenuation components such that a correlation of the attenuations components is reduced. The invention relates further to a corresponding projection method and a corresponding computer program.
摘要:
An apparatus includes a local minimum identifier (408) that identifies a local minimum between overlapping pulses in a signal, wherein the pulses have amplitudes that are indicative of the energy of successively detected photons from a multi-energetic radiation beam by a radiation sensitive detector, and a pulse pile-up error corrector (232) that corrects, based on the local minimum, for a pulse pile-up energy-discrimination error when energy-discriminating the pulses using at least two thresholds corresponding to different energy levels. This technique may reduce spectral error when counting photons at a high count rate.
摘要:
An imaging system including a radiation source (110) that emits poly-chromatic radiation that traverses an examination region and a detector (116) that detects radiation traversing the examination region and produces a signal indicative of the energy of a detected photon. The system further includes an energy discriminator (122) that energy resolves the signal based on a plurality of different energy thresholds, wherein at least two of the energy thresholds have values corresponding to at least two different K-edge energies of two different elements in a mixture disposed in the examination region. The system also includes a signal decomposer (132) that decomposes the energy-resolved signal into at least a multi K-edge component representing the at least two different K-edge energies. In one instance, a stoichiometric ratio of the two different elements in the contrast agent is known and substantially constant.
摘要:
An imaging system including a radiation source (110) that emits poly-chromatic radiation that traverses an examination region and a detector (116) that detects radiation traversing the examination region and produces a signal indicative of the energy of a detected photon. The system further includes an energy discriminator (122) that energy resolves the signal based on a plurality of different energy thresholds, wherein at least two of the energy thresholds have values corresponding to at least two different K-edge energies of two different elements in a mixture disposed in the examination region. The system also includes a signal decomposer (132) that decomposes the energy-resolved signal into at least a multi K-edge component representing the at least two different K-edge energies. In one instance, a stoichiometric ratio of the two different elements in the contrast agent is known and substantially constant.
摘要:
A method includes detecting radiation that traverses a material having a known spectral characteristic with a radiation sensitive detector pixel that outputs a signal indicative of the detected radiation and determining a mapping between the output signal and the spectral characteristic. The method further includes determining an energy of a photon detected by the radiation sensitive detector pixel based on a corresponding output of the radiation sensitive detector pixel and the mapping.