Abstract:
A control valve for a heat exchanger adapted to temper the temperature of a first fluid by heat exchange with a second fluid. The control valve includes a housing adapted to fasten adjacent a wall of the heat exchanger, with the housing defining a chamber separate from a compartment. When fastened to the heat exchanger, the housing communicates the compartment with the flow channels of the second fluid, and opens the chamber to flow of the first fluid via a passage through the adjacent wall of the heat exchanger. A valve member is in the compartment for selectively controlling communication of the compartment with a source of the second fluid, and a thermostat is positioned in the chamber to contact the flow of the first fluid, with the thermostat controlling the valve member responsive to the temperature of the first fluid.
Abstract:
A heat exchanger system is provided having a heat exchanger including a plurality of conduits to receive a first fluid. The conduits have a plurality of passages therebetween which are in heat exchange relation therewith to receive a second fluid. An inlet and an outlet are connected to the plurality of conduits, and an inlet and outlet are connected to the plurality of passages. A valve is connected to one of the inlets to limit fluid flow therethrough. A thermally-responsive actuator is provided for the valve and extends into one of the conduits and the passages to control the valve as an incident of the temperature of a fluid flowing through the one of the conduits and the passages.
Abstract:
A rotary hammer with a pneumatic impact mechanism carries on a drive shaft, non-rotatably and non-displaceable axially relative thereto, a coupling element as well as, rotatably and displaceable axially relative thereto, a drive element. The drive element has a peripheral drive fin constituting a cam/control curve which engages between two rollers. The rollers are mounted on the rear end of a piston of the pneumatic impact mechanism with their axes of rotation perpendicular to the longitudinal axis of the piston. The drive element can at choice be brought into engagement with the coupling element. A manually operable control member may be operated to maintain the drive element out of such engagement.
Abstract:
The invention relates to a quick-action closure coupling for connecting a supply or discharge line to a wall of a collecting tank of a heat exchanger. The coupling can include a first coupling part and a second coupling part with a radially inner peripheral wall. The first coupling part can have a radially outer peripheral wall, and at least one sealing ring can be arranged between the peripheral walls. Latching points can be provided in order to lock the coupling parts. In order to simplify the quick-action closure coupling, the radially outer peripheral wall of the one coupling part can have a mitered cutout into which the other coupling part engages.
Abstract:
The invention concerns a device and method for cooling and preheating, especially of transmission fluid, of an internal combustion engine, with an equalization tank, with at least one radiator, which can be connected by means of an engine thermostat when a predetermined temperature is reached in the cooling loop, and with a water/oil heat exchanger. It is prescribed according to the invention that the forward stream (1) of a single water/oil heat exchanger (5) be branched off in the heating phase by means of a valve unit (3) essentially from the main cooling loop (12) of the internal combustion engine (17) and that its forward stream (1) in the cooling phase be taken by means of the same valve unit (3) essentially in the coolant side stream (13) from the low-temperature region (14) of the radiator (4) or a separate low-temperature cooler (14a) connected in the side stream after radiator (4, 4a). The method proposes that the forward stream (1) of the water/oil heat exchanger (5) be taken in the heating phase essentially from the main coolant stream (12) not flowing through the radiator (4), that switching to cooling operation occur at a temperature lying somewhat below the switch point of the engine main thermostat (9) and the forward stream (1) of the water/oil heat exchanger (5) in cooling operation be branched off essentially from the low-temperature region (14) of radiator (4), or from a low-temperature cooler (14a) additionally connected in the side stream after radiator (4, 4a).
Abstract:
A thermostatic valve assembly includes three housing components (16, 18, 20) containing two interconnected chambers (64, 78). A first thermally responsive valve unit (68) is disposed in the chamber (64) while a second thermally responsive valve element (98) is disposed in the chamber (78). Both the chambers (64) and (78) have inlets (60, 110) and the chamber (64) has an outlet (66). The valve may assume configurations allowing a minimal flow (FIG. 2), a large volume warm up flow (FIG. 3), a mixed flow regimen (FIG. 4) and a pure cooling flow regimen (FIG. 5).
Abstract:
In order to control the temperature of the transmission oil of a motor vehicle driven by a liquid-cooled engine, a coolant/transmission oil heat exchanger is provided. The coolant stream supplied to the heat exchanger is miscible in a thermostatic valve from recooled and non-recooled coolant in order to achieve a desired temperature. Preferably the thermostatic valve is controlled by the temperature of the transmission oil, but it is also possible to have two expanding material elements as control pistons of the thermostatic valve, with one control piston being provided in the oil chamber of the thermostatic valve and the other control piston being provided in the coolant mixing chamber of the thermostatic valve. It is also possible, for purposes of precontrol, to electrically heat at least one of the control pistons.
Abstract:
A thermostatic valve assembly includes three housing components (16, 18, 20) containing two interconnected chambers (64, 78). A first thermally responsive valve unit (68) is disposed in the chamber (64) while a second thermally responsive valve element (98) is disposed in the chamber (78). Both the chambers (64) and (78) have inlets (60, 110) and the chamber (64) has an outlet (66). The valve may assume configurations allowing a minimal flow (FIG. 2), a large volume warm up flow (FIG. 3), a mixed flow regimen (FIG. 4) and a pure cooling flow regimen (FIG. 5).
Abstract:
A rotary hammer has a reciprocating piston of a pneumatic impact mechanism driven from a rotatable drive shaft. A coupling element is fixed on, and a drive element slidably mounted on, the drive shaft. These elements have interengageble tapered coupling surfaces and are biased apart by a spring therebetween. The drive element is disposed forwardly of the coupling element and is slidable rearwardly to drivingly engage the coupling surfaces for transmitting drive to the piston. The relative disposition of the drive and coupling elements causes reaction force on the piston, consequential in use upon generation of percussive blows, to urge the drive element into intensified engagement with the coupling element.
Abstract:
A stub connection for a heat exchanger that is arranged in a housing. The stub connection includes a first part which is fastened to the heat exchanger and a second part which has a stub shank extending through an opening in the housing and is seated in a hole of the first part. The stub connection also includes at least two seals. The first seal is an annular seal, which is seated in a groove of the stub shank and the second seal is a gasket, which is arranged between the opening, the stub shank, and the first part. The first seal is seated in the hole and seals between the stub shank and the first part.