Abstract:
The method according to the invention is suitable for determining a powder quantity in a container and for determining a change in powder quantity, i.e. the powder quantity that is supplied from the container(s). The powder is fluidized in the container, the pressure of the fluidized powder in the container is measured to determine the pressure of the fluidized powder or the change of the pressure between two measurements, wherein the powder quantity in the container, or which was supplied from the container between two measurements is calculated from the pressure or the change in pressure. By the method according to the invention it is possible by a simple pressure measurement to determine the powder quantity which is supplied per time unit from the container and which is sprayed by the coating apparatus, and therefore to determine the supplied powder mass flow.
Abstract:
The present invention provides a method of operating a powder coating system, comprising at least one coating device, a coating compartment and a suction system in the coating compartment. In the method, a workpiece is passed through a coating compartment. The coating powder is discharged by the coating device to the workpiece and excess coating powder is sucked off from the coating compartment, wherein the powder mass flow of the coating powder discharged by the or each coating device is detected and the suction system is controlled in accordance with the powder mass flow. For this purpose the invention provides a powder coating system comprising a measuring means for detecting the powder mass flow of the coating powder discharged by the or any coating device, and an actuator means for setting the suction system in accordance with the powder mass flow.
Abstract:
The invention provides a method of generating a high voltage in an electrostatic powder coating gun with a high-voltage generator having a transformer and a high-voltage cascade arrangement. The primary coil of the transformer is fed with an a.c. supply voltage operating at a working frequency. During operation of the coating gun, the frequency of the supply voltage is continuously varied about the working frequency, the current intensity of the primary coil current of the transformer is also continuously detected and the direction of frequency variation is reversed every time an increase in the current intensity of the primary coil current is determined. An electrostatic powder coating gun operating with the present high-voltage generating method includes a current detection circuit for continuously detecting the current intensity of the primary coil current of the transformer, a sweep generator for continuously varying the frequency of the supply voltage about the working frequency, and a control for controlling the operation of the sweep generator.
Abstract:
An electrostatic paint spray gun having built-in high-voltage generator that is cast into insulating material is improved in that the dielectric strength is increased in the region of that face of the insulating member that is adjacent to the charging electrode. In a first solution, the high-voltage cascade is cast such into the plastic member for this purpose that its high-voltage output is situated adjacent the input transformer, whereby a small plug tube for the stranded electrode lead is additionally co-cast into the insulating member parallel to the cascade. In a second solution, an annular gap is left free between the stranded electrode lead and the insulating member, is filled with insulating oil and is sealed with a seal.