摘要:
A front extended portion, a pair of facing extending segments, and a rear extended portion mounted on the extending segments, which compose a coil separator, are integrally molded. Saddle-type horizontal coil is inserted in a rear extended portion through an opening between the pair of facing extending segments. In this state the horizontal coil are fixed to the rear extended portion of the coil separator by means of spacers.
摘要:
Light emitted from a light source (22) is used through a light projection optical system (23) to perform coaxial down-emission lighting on a measurement target (36). Light reflected by the measurement target (36) is formed on a photo-detector (26) through an image formation optical system (24). Along its optical path, a spectroscope (25) is provided for converting an image impinging on the photo-detector (26) into a spectroscopic image having a predetermined wavelength band. A measurement point extraction portion (32) in a signal processing portion (28) determines a predeterm film thickness measurement point from an image picked up by the photo-detector (26), extracts an image signal at the film thickness measurement point, and transmits t to film thickness operation portion (33). The film thickness operation portion (33) measured film thickness of a thin film, which is the measurement target (36), from this signal.
摘要:
A process for preparing a cyclic ester by reacting an .alpha.-hydroxycarboxylic acid or an .alpha.-hydroxycarboxyliclic acid ester with an orthoester. A process for purifying a cyclic ester by containing water and acid as impurities by adding an orthoester to a cyclic ester obtained by reaction of a reaction mixture including an .alpha.-hydrocarboxylic acid or an .alpha.-hydroxycarboxyliclic acid ester. According to the present invention, a high-purity cyclic ester containing small amounts of impurities such as water and an acid component can be provided.
摘要:
A method of purifying a crude glycidyl (meth)acrylate, by (1) subjecting a crude glycidyl (meth)acrylate containing epichlorohydrin and other chlorine compounds as impurities to a stripping treatment with a mixed gas containing oxygen gas in the presence of a quaternary ammonium salt, and then (2) distilling the treated product to obtain a purified glycidyl (meth)acrylate.
摘要:
Provided are: an electrode for a fuel cell, which is obtained by impregnating a supporting base with a vinyl polymer composition and a fuel cell catalyst, the vinyl polymer composition in which a vinyl polymer A having at least one kind of crosslinkable group selected from the group consisting of an epoxy group and an isocyanate group protected by a protecting group and a vinyl polymer B having at least one kind of crosslinkable group selected from the group consisting of a hydroxyl group, a carboxyl group, and an amino group are contained, and at least one of the vinyl polymer A and the vinyl polymer B has an acidic group forming a salt, reacting the crosslinkable group of the vinyl polymer A with the crosslinkable group of the vinyl polymer B, and then subjecting the salt to proton exchange; a method for producing the same; and a fuel cell including an electrolyte membrane and the electrode for a fuel cell.
摘要:
Disclosed is an acrylic syrup containing a vinyl monomer (A) of methyl methacrylate and a polymerized solid component (B) which is a high polymer of said vinyl monomer and has a weight average molecular weight of from 30,000 to 2,000,000 as measured by the GPC and a viscosity at 25° C. of from 0.1 to 50 Pa·s, wherein at least part of said polymerized solid component (B) is a grafted rubber obtained by graft-polymerizing said vinyl monomer with a rubbery polymer, and said grafted rubber has a large branching coefficient. The acrylic resin molded articles obtained from the acrylic syrup exhibit excellent impact resistance.
摘要:
A methyl methacrylate syrup is produced by the steps of (1) preparing a starting material comprising methyl methacrylate or a monomer mixture mainly comprising methyl methacrylate, and dividing the starting material into 20 to 70% by weight of an initial charge and 30 to 80% by weight of an after-charge; (2) heating the initial charge in a reactor; (3) adding a whole protion of a chain transfer agent at the time when the initial charge reaches a reaction temperature; (4) adding the after-charge over 0.1 to 10 hours together with a polymerization initiator having a half-life of 10 to 300 seconds at the reaction temperature; (5) continuing the heating after the addition of the after-charge and the polymerization initiator is complete; and (6) adding a hindered phenol polymerization inhibitor at the time the heating is finished. The methyl methacrylate syrup thus produced is excellent in storage stability.
摘要:
A process for continuously preparing a high quality methacrylic polymer with a high productivity is provided. The process comprises continuously polymerizing methyl methacrylate alone or a monomer mixture of methyl methacrylate and an alkyl acrylate by a solution polymerization using methanol as a solvent, directly feeding the resulting polymerization reaction product to an extruder having a plurality of vents, and extruding the polymer, while volatiles are removed through the vents.
摘要:
There is disclosed a process for producing a glycidyl ester of acrylic acid or methacrylic acid which comprises the steps of neutralizing acrylic acid or methacrylic acid with a carbonate or a bicarbonate of an alkali metal in an excess amount of epichlorohydrin while an oxygen-containing gas is blown into the liquid reaction system; subjecting water formed by the neutralization and epichlorohydrin to azeotropic distillation to discharge them outside the reaction system and to form an alkali metal salt of acrylic acid or methacrylic acid; adding a quaternary ammonium salt as a catalyst to the reaction system to react the alkali metal salt of the acid with the epichlorohydrin and thus synthesize the glycidyl ester of the acid; cooling the liquid reaction product while recovering part of the excess epichlorohydrin under reduced pressure; adding aqueous solution of an alkali hydroxide to the liquid reaction product to separate into aqueous layer and organic layer; adding a catalyst deactivator to the organic phase; and subsequently distilling the organic layer to separate the glycidyl ester of the acid while blowing an oxygen-containing gas into the organic layer. The above process makes it possible to efficiently produce a highly pure glycidyl ester of acrylic acid or methacrylic acid in high yield with minimized contents of impurities.