Abstract:
A lithium secondary battery including a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode, wherein the negative electrode is lithiated by pre-lithiation, a total capacity of a negative electrode active material of the negative electrode is larger than a total capacity of a positive electrode active material of the positive electrode, and a charge capacity of the negative electrode is smaller than a charge capacity of the positive electrode by the pre-lithiation.
Abstract:
The present invention relates to a separator for a lithium secondary battery, including a porous resin comprising one or more polar functional groups selected from the group consisting of —C—F; and —C—OOH and —C═O on a surface thereof, wherein, among the polar functional groups, a molar ratio of —C—OOH and —C═O to —C—F ranges from 0.2:0.8 to 0.8:0.2, and a method of manufacturing the same.
Abstract:
The present invention relates to an anode active material including natural graphite and mosaic coke-based artificial graphite, and a lithium secondary battery including the same. According to an embodiment of the present invention, an anode active material including natural graphite and mosaic coke-based artificial graphite is used, when applied to a lithium secondary battery, intercalation and deintercalation of lithium ions is more facilitated and conductivity of an electrode is improved even if no or little conductive material is used. Furthermore, the increase in conductivity can lead to not only a further improvement in rate performance of a lithium secondary battery but also a reduction in interfacial resistance.
Abstract:
Provided is an anode active material including a transition metal-metaphosphate of Chemical Formula 1: M(PO3)2 where M is any one selected from the group consisting of titanium (Ti), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), ruthenium (Ru), palladium (Pd), and silver (Ag), or two or more elements thereof. Since the anode active material of the present invention is stable and has excellent conversion reactivity while including only transition metal and phosphate without using lithium in which the price thereof is continuously increased, the anode active material of the present invention may improve capacity characteristics.
Abstract:
The present invention relates to a conductive material for a secondary battery, including a pitch coated graphene sheet, an anode for a secondary battery including the same, and a lithium secondary battery including the electrode.
Abstract:
A method for manufacturing negative electrode active material including the steps of manufacturing a pellet by extruding a mixture of lithium metal and negative electrode active material, immersing the pellet in an electrolyte comprising an SEI film-forming additive, and manufacturing the pellet into powder form by grinding, washing and drying same. A negative electrode and a lithium rechargeable battery manufactured using the lithium-active material powder has an SEI film that is uniformly formed by having lithium uniformly doped in the negative electrode. During initial charging, the SEI film is stably formed, and thus an effect is achieved whereby the initial efficiency of the lithium rechargeable battery is improved.
Abstract:
A negative electrode for a lithium secondary battery and a lithium secondary battery including the negative electrode are disclosed. The negative electrode includes a negative electrode current collector, a first negative electrode active material layer present on the negative electrode current collector, and a second negative electrode active material layer present on the first negative electrode active material layer. The first negative electrode active material layer includes two or more kinds of first negative electrode active materials, and the second negative electrode active material layer includes a second negative electrode active material having swelling that is smaller than that of the first negative electrode active material layer. Therefore, the surface of the negative electrode does not exhibit deformation during pre-lithiation.
Abstract:
A method of manufacturing a negative electrode for a lithium secondary battery, the method includes forming a negative electrode active material layer on a negative electrode current collector to manufacture a negative electrode assembly, and pre-lithiating the negative electrode assembly. The pre-lithiating of the negative electrode assembly includes a first pre-lithiation step of performing pre-lithiation by impregnating the negative electrode assembly with a first pre-lithiation solution and a second pre-lithiation step of performing pre-lithiation by impregnating the negative electrode assembly with a second pre-lithiation solution after the first pre-lithiation step. The first pre-lithiation solution includes an ionizable first lithium salt, a first organic solvent, and a first additive. The second pre-lithiation solution includes an ionizable second lithium salt, a second organic solvent, and a second additive.
Abstract:
An anode active material for a secondary battery, which has improved cycle swelling properties and rapid charge performance, an anode comprising an anode active material for a secondary battery, and a method for manufacturing same. The anode active material is a mixture of scaly natural graphite and spherical natural graphite. An average particle diameter (D50) of the scaly natural graphite is 10 μm to 15 μm and an average particle diameter (D50) of the spherical natural graphite is 14 μm or less.
Abstract:
A negative electrode for a lithium secondary battery including a negative electrode current collector and a negative electrode active material layer formed on at least one surface of the negative electrode current collector. The negative electrode active material layer includes a negative electrode active material including artificial graphite particles, and the negative electrode has a pore resistance Rp of 6Ω or less.