Abstract:
An active stylus pen according to the present invention includes a first signal processor configured to generate a touch frame recognition signal for discriminating touch frames on the basis of sub-pulses corresponding to part of each touchscreen driving signal received from a touchscreen and a second signal processor configured to generate a pen driving signal synchronized with main pulses of each touchscreen driving signal other than the sub-pulses and to vary the pen driving signal in units of a touch frame according to the touch frame recognition signal such that additional pen information is reflected in the pen driving signal.
Abstract:
A touch sensing system comprises a touchscreen with a plurality of touch electrodes, to which a touchscreen driving signal is applied, and a stylus pen that generates a pen driving signal based on the touchscreen driving signal and sends the same to the touchscreen. The stylus pen comprises: an amplifier that amplifies the touchscreen driving signal to generate an amplified signal; a comparator that compares the amplified signal with a preset reference voltage to generate a comparator output signal; and a signal processor that measures the pulse width of the comparator output signal, adjusts an amount of delay based on a measurement, and determines an output timing of the pen driving signal based on an adjusted amount of delay to synchronize the pen driving signal with the touchscreen driving signal.
Abstract:
Embodiments of the present disclosure are related to a touch display device, by implementing a touch routing line using a part of a display electrode metal disposed in a non-active area of a display panel, the non-active area is reduced, and the touch routing line can be disposed while preventing an increase of a load of the touch routing line. Furthermore, by connecting the touch routing line implemented with the display electrode metal under an encapsulation layer to a touch electrode on the encapsulation layer through a connecting metal located under a dam, the touch routing line can be disposed under the encapsulation layer without dropping a function of the encapsulation layer for reducing moisture permeation.
Abstract:
Embodiments of the present disclosure relate to a touch display device, and more particularly, to a touch display device which can have a small bezel size even when touch routing lines connecting a touch sensor to a touch sensing circuit are disposed in a non-display area and which can improve touch sensitivity by preventing or minimizing the formation of parasitic capacitance that can be caused by the touch routing lines.
Abstract:
A touch display device comprises a touch panel including a plurality of touch electrodes; and a touch driving circuit configured to sense one or more of the plurality of touch electrodes, wherein the touch driving circuit has an operation period including a plurality of touch intervals that includes a first sensing interval and a second sensing interval, and the first sensing interval includes at least a first time division sensing interval and the second sensing interval includes at least a second time division sensing interval, and wherein the touch driving circuit is configured to detect a pen signal output from a first pen through one or more touch electrodes of the plurality of touch electrodes during the first time division sensing interval, and detect a pen signal output from a second pen through one or more touch electrodes of the plurality of touch electrodes during the second time division sensing interval.
Abstract:
The present embodiments relate to a driving circuit and a touch display apparatus for sensing a user's touch position and touch force with respect to a display panel, and further relate to a driving method thereof. The touch display apparatus may include a plurality of first electrodes that are configured to be embedded in a display panel, and a second electrode that is configured to be positioned outside the display panel. The touch display apparatus may read a force sensing signal from the second electrode through a signal detecting unit that is electrically connected to the second electrode. Therefore, it is possible to sense a touch force without separating a force sensing signal from a signal received from the first electrode, and to sense a user's touch force through the driving of the second electrode regardless of the driving mode of the first electrode.
Abstract:
A driver circuit, a touch display device, and a method of driving the touch display device. Touching force is sensed by driving a plurality of first electrodes disposed in a display panel and a second electrode located outside of the display panel. The first electrodes corresponding to force sensors for sensing the touching force and the second electrode are driven by alternating in-phase driving and antiphase driving. Touching force components are selectively and accurately extracted from sensing data, and the touching force can be accurately sensed.
Abstract:
A touch sensing system includes a touch screen including touch sensors and sensing lines, the touch sensors and the sensing lines being divided into first and second sensing areas, a first touch sensing integrated circuit (IC) sensing a touch input of the first sensing area using a signal received through receiving channels, a second touch sensing IC sensing a touch input of the second sensing area using a signal received through receiving channels separated from the receiving channels of the first touch sensing IC, differential amplifiers between the sensing lines and the receiving channels of the first and second touch sensing ICs, and a switch connecting a sensing line, which is closest to the first sensing area among the sensing lines of the second sensing area, to an Nth differential amplifier connected to a last receiving channel of the first touch sensing IC.
Abstract:
A display device can include a substrate in which a plurality of pixels each including an emissive area and a transmissive area is disposed. The display device can further include a touch electrode in the transmissive area, and a plurality of first touch connection lines extended in a first direction and electrically connecting the touch electrodes respectively disposed in the pixels adjacent to each other. Further, the display device can include a reference line on the substrate in the emissive area and extended in a second direction different from the first direction, and a plurality of touch lines extended in the second direction in the emissive area and disposed on a plurality of insulating layers covering the reference line. Furthermore, the display device can include a planarization layer covering the plurality of touch lines, and a plurality of light emitting diodes on the planarization layer in the emissive area.
Abstract:
Embodiments of the present disclosure are related to a touch display device, as a portion of a touch routing line is disposed on an area surrounded by a touch electrode line on an active area and is electrically connected to the touch electrode line, the touch routing line can be disposed on the active area while reducing an influence of a noise. Thus, as an additional arrangement of the touch routing line and a free adjustment of a connecting point of the touch routing line become possible without an increase of an area for arranging the touch routing line, a load by the touch routing line and a difference of a sensitivity according to positions of the touch electrode line are reduced and a performance of a touch sensing can be improved.