Abstract:
A solar cell module includes a plurality of solar cells each including a semiconductor substrate and first electrodes and second electrodes extended on a back surface of the semiconductor substrate, first conductive lines connected to the first electrodes at crossings between the first electrodes and the first conductive lines through first conductive adhesive layers, second conductive lines connected to the second electrodes at crossings between the second electrodes and the second conductive lines through the first conductive adhesive layers, and an intercell connector extended between a first solar cell and a second solar cell that are adjacent to each other. The first conductive lines connected to the first solar cell and the second conductive lines connected to the second solar cell are commonly connected to the intercell connector.
Abstract:
A solar cell module is discussed, which includes a plurality of strings each including a plurality of solar cells, which are connected in series to one another through an interconnector, a front transparent substrate disposed on front surfaces of the plurality of strings, a first encapsulant disposed between the front transparent substrate and the front surfaces of the plurality of strings, a first reflector disposed in a first space between the plurality of solar cells included in each string, which are separated from one another in a first direction corresponding to a longitudinal direction of each string, and a second reflector disposed in a second space between the plurality of strings, which are separated from one another in a second direction crossing the first direction. The first and second reflectors reflect incident light.
Abstract:
An interconnector is discussed, which includes a conductive metal of a band shape including a first surface and a second surface opposite the first surface; and a solder coated on the first surface, wherein the first surface of the conductive metal includes at least a flattened peak extending in a length direction of the conductive metal, the flattened peak including an inclined portion and a flat portion extending in a width direction of the conductive metal, and wherein a length of the inclined portion is less than a length of the flat portion in the width direction of the conductive metal.
Abstract:
Discussed are an apparatus and method for driving a liquid crystal display device, whereby the apparatus includes a data driver for driving data lines of a liquid crystal panel, setting detectable temperatures for different temperature detection time points, detecting an ambient temperature at each temperature detection time point, and outputting a gate drive voltage variation signal and a common voltage variation signal in accordance with the set and detected temperatures at each temperature detection time point, and a power supplier for varying levels of a gate drive voltage and a common voltage in accordance with the gate drive voltage variation signal and the common voltage variation signal, and supplying the gate drive voltage and common voltage to a gate driver and the liquid crystal panel, respectively.
Abstract:
A solar cell module is discussed. The solar cell module is defined with an effective area and a dead area, and includes a solar cell, and a substrate disposed at one surface of the solar cell. The substrate includes a light refraction pattern formed to correspond to the dead area.
Abstract:
A solar cell module and a method of manufacturing the same are provided. The method of manufacturing a solar cell module includes forming a plurality of strings to which a plurality of solar cells are connected; disposing a target string at a repair device, the target string including a target solar cell having a defect; separating the target solar cell from the target string by selectively thermally processing a connection area of a target intercell connector and the plurality of conductive wirings fixed to the target solar cell; disposing a new solar cell at the target string; and connecting the plurality of conductive wirings fixed to the new solar cell to the target intercell connector.
Abstract:
A solar cell module includes a plurality of cell strings having a plurality of solar cells, each solar cell having a semiconductor substrate, and a first conductivity-type electrode and a second conductivity-type electrode provided on a first surface of the semiconductor substrate, an interconnector electrically connecting a first conductivity-type electrode of a first solar cell, among the plurality of solar cells included in the plurality of cell strings, and a second conductivity-type electrode of a second solar cell adjacent to the first solar cell in a first direction, to connect the first and second solar cells in series, and a first shield positioned on a front surface of the interconnector between the first and second solar cells, and extending in a second direction crossing the first direction.
Abstract:
A solar cell module and a method for manufacturing the same are discussed. The solar cell module includes a plurality of solar cells each including a semiconductor substrate and first and second electrodes, each of which has a different polarity and is extended in a first direction on a back surface of the semiconductor substrate, and a plurality of conductive lines extended in a second direction crossing the first direction on the back surface of the semiconductor substrate, connected to one of the first and second electrodes through a conductive adhesive, and insulated from the other electrode by an insulating layer. The conductive adhesive includes a first adhesive layer connected to the one electrode and a second adhesive layer positioned on the first adhesive layer and connected to the plurality of conductive lines.
Abstract:
A solar cell module includes a plurality of solar cells each including a semiconductor substrate and first and second electrodes extending in a first direction on a back surface of the semiconductor substrate, and conductive lines disposed to extend in a second direction crossing the first direction on the back surface of the semiconductor substrate of each solar cell. The conductive lines are connected to the first and second electrodes through a conductive adhesive or are insulated from the first and second electrodes through an insulating layer. A first direction length of the conductive adhesive and a first direction length of the insulating layer are equal to or greater than a linewidth of each conductive line and are less than a distance between the conductive lines. The first direction length of the insulating layer is greater than the first direction length of the conductive adhesive.
Abstract:
A solar cell and a solar cell module are disclosed. The solar cell includes a semiconductor substrate, an emitter region extending in a first direction, a back surface field region extending in the first direction in parallel with the emitter region, a first electrode connected to the emitter region and extending in the first direction, and a second electrode connected to the back surface field region and extending in the first direction. The first electrode has different linewidths at two positions that are separated from each other in the first direction. The second electrode has different linewidths at two positions that are separated from each other in the first direction. A linewidth of the first electrode and a linewidth of the second electrode are different from each other at two positions that are separated from each other in a second direction crossing the first direction.