Abstract:
A terminal is disclosed by the present specification. The terminal may comprise: an antenna; a diplexer for compounding a carrier of a first band and a carrier of a second band and for connecting or disconnecting the same to the antenna; a filter connected to the diplexer, a first duplexer connected to the filter for separating transmissions and receptions in the carrier of the first band; and a second duplexer connected to the diplexer for separating transmissions and receptions in the carrier of the second band. To this end, the filter can eliminate harmonic components and intermodulation distortions (IMD) that occur when transmission in the carrier of the first band and transmission in the carrier of the second band are simultaneously performed.
Abstract:
A method for limiting a spurious emission, and a user equipment (UE) thereof are discussed. The method according to one embodiment includes configuring a radio frequency (RF) unit of the UE to use a band 1; if the RF unit is configured to use the band 1, controlling the RF unit of the UK to limit a maximum level of spurious emission to −50 dBm for protecting another UE using a band 5; and transmitting an uplink signal through the configured RF unit. The band 1 includes an uplink operating band of 1920-1980 MHz and a downlink operating band of 2110-2170 MHz. The band 5 includes an uplink operating band of 824-849 MHz and a downlink operating band of 869-894 MHz.
Abstract:
This electronic device comprises: a main frame disposed along a peripheral region of a display and extending along a side region and a rear region of the electronic device; and an antenna module disposed in an inner space of the main frame and configured to radiate a radio signal in a forward direction or a downward direction of the electronic device through the main frame. The antenna module comprises: a first dielectric layer disposed spaced apart from one side of the antenna substrate in a first direction in which antenna elements radiate signals; a second dielectric layer disposed spaced apart from the first dielectric layer in the first direction; and an air gap layer disposed between the first dielectric layer and the second dielectric layer.
Abstract:
An electronic device having an antenna according to an embodiment is provided. The electronic device may include a radiator configured by stacking metal patterns on different layers of a multi-layer substrate, and a ground layer arranged on the different layers of the multi-layer substrate and operating as ground for the radiator. At least some of the metal patterns may be vertically interconnected, and any one of the metal patterns may be connected to a feeding pattern.
Abstract:
Provided is an electronic device having an antenna according to an embodiment. The electronic device may comprise a first and a second ground plane arranged on different layers of a multi-layer substrate and configured to be connected to each other through vias spaced a predetermined distance apart from each other. The electronic device may comprise a signal line arranged on the same plane as the first ground plane which is disposed at the upper side among the first and the second ground plane. The electronic device may comprise a radiator configured to be electrically connected to the signal line and emit a signal. The first ground plane may be disposed at only one region of one side region and the other side region of the signal line in a predetermined section.
Abstract:
There is provided a method for transmitting/receiving a signal in carrier aggregation. The method may comprise: transmitting an uplink signal by using two uplink carriers when three downlink carriers and two uplink carriers are configured to be aggregated. The three downlink carriers include three operating bands among evolved universal terrestrial radio access (E-UTRA) operating bands 1, 2, 3, 5, 12, 30 and 40 and the two uplink carrier includes two operating bands thereamong. The method may comprise: receiving a downlink signal through all of three downlink carriers. Here, a predetermined maximum sensitivity degradation (MSD) is applied to receiving reference sensitivity of the downlink signal, thereby successfully receiving the signal.
Abstract:
One disclosure of the present specification provides a wireless device for supporting a first band for cellular communications and a second band for D2D communications. The wireless device may comprising: a main antenna; a first RF chain configured to process a first transmission signal and a second transmission signal wherein the first and second transmission signals are to be transmitted via the main antenna using uplink bands of the first and second bands respectively; a second RF chain configured to process a first reception signal, wherein the first reception signal is received via the main antenna using an uplink band of the second band; a third RF chain configured to process a second reception signal, wherein the second reception signal is received via the main antenna using a downlink band of the first band.
Abstract:
A method for limiting a spurious emission; and a user equipment (UE) therefore are discussed. The method according to one embodiment includes, if a radio frequency (RF) unit of the UE is configured to use a band 1, configuring the RF unit of the UE to limit a maximum level of spurious emission to −50 dBm for protecting other UE using a band 5; if the RF unit of the UE is configured to use the band 5, configuring the RF unit of the UE to limit the maximum level of spurious emission to −50 dBm for protecting the other UE using at least one of bands 1, 3, 7, 8, 38, 40; and transmitting an uplink signal through the configured RF unit.
Abstract:
There is provided a method for limiting a spurious emission, the method performed by a user equipment (UE). The method may comprise: if a radio frequency (RF) unit of the UE is configured to use a 3GPP standard based E-UTRA band 1, configuring a RF unit of the UE to limit a maximum level of spurious emission to −50 dBm for protecting other UE using a 3GPP standard based E-UTRA band 5 in order to apply a UE-to-UE coexistence requirement for the same region to inter-regions; if the RF unit is configured to use the 3GPP standard based E-UTRA band 5, configuring the RF unit of the UE to limit a maximum level of spurious emission to −50 dBm for protecting other UE using at least one of the 3GPP standard based E-UTRA bands 1, 3, 7, 8, 38, 40 in order to apply a UE-to-UE coexistence requirement for the same region to inter-regions; and transmitting an uplink signal through the configured RF unit.