Abstract:
The present invention discloses a method of performing Bandwidth Part (BWP) switching by a user equipment (UE). The method comprises scheduling to receive a Synchronization Signal Block (SSB) during a first period; determining whether to perform the BWP switching based on the first period and a second period representing time duration for performing the BWP switching; and when the first period and the second period do not overlap, performing the BWP switching.
Abstract:
The present invention discloses a method of transmitting/receiving signals by a terminal supporting EN-DC. The method comprises determining a number of interrupted slots; and transmitting or receiving the signals based on the number of interrupted slots, wherein the signals are not transmitted or received during the interrupted slots, wherein the number of interrupted slots is determined based on SCS of cell supporting the NR, a MG offset, and a MGL, and wherein the number of interrupted slots is 7 when the SCS is 15 kHz, the MG offset is 0.5 ms, and the MGL is 6 ms.
Abstract:
One embodiment of the present invention provides a method for a wireless device determining transmission power. The method may comprise the steps of: when asynchronous dual transmissions for vehicle-to-everything (V2X) and a cellular uplink are set, and when a subframe p for cellular uplink transmission and a subframe q for V2X transmission mutually overlap, determining whether the subframe p for cellular uplink transmission precedes the subframe q for V2X transmission; and on the basis of the decision, determining a reference subframe from among the subframe p and the subframe q. Here, the reference subframe may be used for determining the lower limit of a transmission power.
Abstract:
One disclosure of the present specification provides a channel estimation method of a user equipment (UE). The method comprising: acquiring a first channel estimate based on a first reference signal allocated to a first resource element of a subframe received from a base station; and removing a second reference signal from a second resource element of the subframe when an additional reference signal is not required, and decoding a data channel multiplexed in the second resource element using a result of channel estimation of an entire channel performed based on the first channel estimate. The second reference signal and the data channel may be multiplexed in the second resource element.
Abstract:
In the present specification, disclosed is a method for receiving a synchronization signal by a terminal. The method may comprise the steps of: determining whether a first synchronization signal from a base station has a higher priority than that of a second synchronization signal from a global navigation satellite system (GNSS) when a terminal has capability to receive the second synchronization signal from the GNSS; and transmitting a sidelink synchronization signal (SLSS) when it is determined that the first synchronization signal has a higher priority, but a signal strength from the base station is less than or equal to a threshold value.
Abstract:
The disclosure of the present invention proposes a method for performing a transmission on a sidelink subframe. The method may comprise: performing the transmission on the sidelink subframe. The sidelink subframe may include a plurality of symbols in a time domain, each of which includes a plurality of resource elements (REs) in a frequency domain. The transmission may include transmitting at least one of a first data signal and a first reference signal (RS), which is repeated in one or more REs in a last symbol with a periodicity of NRPT_L, The one or more REs having the periodicity of NRPT_L in the last symbol may have a boosted transmit power for transmitting the at least one of the first data signal and the first RS.
Abstract:
The disclosure of the present invention proposes a method for transmitting a sidelink synchronization signal (SLSS). The method may be performed by a vehicle-to-vehicle (V2V) terminal and comprise: performing measurements during a predetermined evaluation time; determining whether values resulting from performing the measurements are below a threshold value; and if the values resulting from performing the measurements during the predetermined evaluation time are below the threshold value, transmitting the SLSS to a neighboring V2V terminal. If the V2V terminal is in radio resource control (RRC) idle state and if the V2V terminal is configured to use 1.28 s or 2.56 s of a discontinuous reception (DRX) cycle length, the V2V terminal may calculate the predetermined evaluation time by using the number of DRX cycles which is not greater than 3.
Abstract:
One disclosure of the present specification provides a terminal capable of simultaneously performing a cellular communication and a D2D communication. The terminal comprises: a first duplexer for separating a transmission signal and a reception signal in a first band for LTE/LTE-Advanced based cellular communication; a second duplexer for separating a transmission signal and a reception signal in a second band; a third duplexer for separating a transmission signal and a reception signal in a third band; and a first band switch for selecting one of the first duplex, the second duplex and the third duplex, wherein when the first band is only used for the cellular communication and the second band is disabled, the second duplex uses the second band for device to device (D2D) communication, and the first band and the second band may correspond to a different inter-band to each other.
Abstract:
The present specification provides a method for receiving data through interference cancellation. The method can comprise the steps of: receiving a transmission signal transmitted by a DMRS-based transmission method; detecting, from the transmission signal, a DMRS-based transmission parameter for an interference cell having caused interference in the transmission signal; estimating an interference channel for the interference cell on the basis of the detected DMRS-based transmission parameter; generating an interference signal for the interference cell on the basis of the estimated interference channel; and cancelling the generated interference signal from the transmission signal so as to restore data transmitted by a serving cell.
Abstract:
One disclosure of the present specification provides a method for receiving a discovery signal from a license assisted access (LAA) based cell operating in an unlicensed band. The method may be performed by a user equipment (UE) and comprise: receiving a discovery signal measurement timing configuration (DMTC) including information on a periodicity of the DMTC and information on an occasion duration of a discovery signal. Here, if the UE operate in a bandwidth of 10 Mhz, the occasion duration may include a first subframe and a second subframe. The method may comprise: performing a cell detection for the LAA based cell operating in the unlicensed band, on the first subframe of the occasion duration; and performing measurements for the LAA based cell operating in the unlicensed band, on the second subframe of the occasion duration.