摘要:
A non-invasive method of buried-utility-mapping includes using a long wavelength gradiometric ground penetrating radar to “see” patches of conductive material below ground and buried pipes and electrical conductors that are all constantly radio-illuminated by local AM radio broadcasts. The underground infrastructure of entire cities can be surveyed this way, point-by-point over time. A short wavelength part of the gradiometric ground penetrating radar operates shoulder-to-shoulder with the magnetic part and is able to improve shallow object resolution, map moisture build-ups under roads, and spot contaminated soils. Two gradiometric ground penetrating radar technologies, cameras, and navigation receivers can be mounted on city vehicles and a daily collection of their data batch transformed by digital processing algorithms into detailed and automatically updating false-color maps of the underground utilities of the whole city and other buried infrastructures.
摘要:
A beat-product radio imaging method (RIM) system uses a matched continuous wave (CW) transmitter and receiver to electronically image material in between. Signal attenuation measurements are taken from a number of different transmitter and receiver perspectives around the material. The transmitter and receiver each have a crystal oscillator rated at 10-ppm or better frequency uncertainty. The receiver's crystal oscillator is used as a local oscillator to beat down the transmitter's carrier frequency to baseband. The frequency error between the local oscillator and the transmitter carrier frequencies produces a beat product of less than one Hertz in frequency and its magnitude is inversely proportional to the path attenuation between the transmitter and receiver. An extremely low-pass filter is used to remove everything above one Hertz in the detector. The receiver sensitivity is therefore extraordinarily high.
摘要:
An underground radio communications and personnel tracking system uses a portable communications device worn by a miner when underground in a mine. A cap-lamp transceiver provides voice and text communication on ultra-low frequency (ULF) to ultra-high frequency (UHF) carrier frequencies and modulation adapted by programming of a software defined radio to making selective and agile radio contacts via through-the-earth, conductor/lifeline, coal seam, tunnel, and ionosphere/earth-surface waveguides for transmission of electromagnetic waves. These waveguides comprise layered earth coal and mineral deposits, and manmade mining complex infrastructures which serendipitously form efficient waveguides. Ultra-Low Frequency F1/F1 repeaters are placed underground in the mine, and providing for extended range of communication of the cap-lamp transceiver with radios and tracking devices above ground of the mine.
摘要:
An unsynchronized acoustic or radio-frequency (RF) computed tomography (CT) imaging system with matched, but independent, continuous wave (CW) transmitters and receivers configured to radiate acoustic or RF transmissions in a plurality of vector paths through solid geologic material. A computer calculates and displays tomographic images constructed from individual acoustic or RF path signal travel time or attenuation measurements logged from registered locations from the CW transmitters and receivers after their being shuttled amongst a number of different transmitter and receiver perspectives available around said geologic material to generate data necessary for computed tomography. Each of the transmitters and receivers include independent unsynchronized crystal oscillators rated at 10-ppm or better frequency uncertainty to produce and to detect CW radio frequency (RF) transmissions.
摘要:
A radio power output amplifier comprises a balanced radio power output that differentially drives a dipole antenna or other balanced load. One half of the differential power output drives one side of the antenna from ground to the maximum positive rail, while the other half of the differential power output drives the opposite side of the antenna from the maximum positive rail to ground. The result is a voltage swing across the antenna that is twice that which would occur if a single ended output was driving an unbalanced load. Since the power output is the square of the voltage divided by the load impedance, the result is four times the power output.
摘要:
A non-invasive method of buried-utility-mapping includes using a long wavelength gradiometric ground penetrating radar to “see” patches of conductive material below ground and buried pipes and electrical conductors that are all constantly radio-illuminated by local AM radio broadcasts. The underground infrastructure of entire cities can be surveyed this way, point-by-point over time. A short wavelength part of the gradiometric ground penetrating radar operates shoulder-to-shoulder with the magnetic part and is able to improve shallow object resolution, map moisture build-ups under roads, and spot contaminated soils. Two gradiometric ground penetrating radar technologies, cameras, and navigation receivers can be mounted on city vehicles and a daily collection of their data batch transformed by digital processing algorithms into detailed and automatically updating false-color maps of the underground utilities of the whole city and other buried infrastructures.
摘要:
An underground tunnel detection system does not employ radar. Instead, an automatic frequency control is used to keep a continuous wave (CW) transmission tuned to the resonant frequency of a resonant microwave patch antenna (RMPA). Changes in loading and the bulk dielectric constant of the mixed media in front of the RMPA will affect its resonant frequency and input impedance. A significant shift in the measured input impedance is interpreted as a possible tunnel, and the phase angle of the measured input impedance tends to indicate a slightly forward or aft position relative to the detection system rolling over it on the ground surface.
摘要:
A movement detection system includes a microwave antenna able to transmit microwave frequency signals into a space. An electronics controller is connected to the microwave antenna, and is configured to continually measure the impedance of the microwave antenna while it transmits microwave frequency signals into the space. An interpretive device is connected to receive impedance measurements from the electronics controller, and is configured to interpret and report changes in the magnitude and phase angles of individual impedance measurements as the passing of things and their direction through the space.
摘要:
An underground tunnel detection system does not employ radar. Instead, an automatic frequency control is used to keep a continuous wave (CW) transmission tuned to the resonant frequency of a resonant microwave patch antenna (RMPA). Changes in loading and the bulk dielectric constant of the mixed media in front of the RMPA will affect its resonant frequency and input impedance. A significant shift in the measured input impedance is interpreted as a possible tunnel, and the phase angle of the measured input impedance tends to indicate a slightly forward or aft position relative to the detection system rolling over it on the ground surface.
摘要:
A movement detection system includes a microwave antenna able to transmit microwave frequency signals into a space. An electronics controller is connected to the microwave antenna, and is configured to continually measure the impedance of the microwave antenna while it transmits microwave frequency signals into the space. An interpretive device is connected to receive impedance measurements from the electronics controller, and is configured to interpret and report changes in the magnitude and phase angles of individual impedance measurements as the passing of things and their direction through the space.