Abstract:
In one embodiment of the present invention a mobile bearing knee prosthesis may include an interface (e.g., a spherical radius interface) comprised of a concave superior surface on a tray and a convex inferior surface on a tibial insert. In another embodiment of the present invention a mobile bearing knee prosthesis may include an interface (e.g., a spherical radius interface) comprised of a convex superior surface on a tibial tray and a concave inferior surface on a insert. In another embodiment of the present invention a mobile bearing knee prosthesis may include a bi-concave interface (e.g., having a “wave” like surface geometry). This “wave” like surface geometry may be at the second bearing (i.e., at the interface between a tibial insert and a tray in the mobile bearing knee as opposed to the interface between the tibial insert and a femoral component).
Abstract:
Various embodiments of the present invention are directed to a shoulder prosthesis. These embodiments may relate to a shoulder prosthesis including, for example, a humeral stem for fracture indication. Of note, certain embodiments of the present invention provide a humeral prosthesis with improved integration of the tuberosities around the humeral stem. Various methods relating to uses and applications of the prosthesis are also disclosed.
Abstract:
One embodiment of the present invention relates to a system in which a knee prosthesis is capable of conversion from a cruciate retaining type prosthesis to a posterior stabilizing type prosthesis. Another embodiment of the present invention relates to a system in which a knee prosthesis is converted from a cruciate retaining type prosthesis to a posterior stabilizing type prosthesis. Another embodiment of the present invention relates to a method in which a knee prosthesis is capable of conversion from a cruciate retaining type prosthesis to a posterior stabilizing type prosthesis. Another embodiment of the present invention relates to a method in which a knee prosthesis is converted from a cruciate retaining type prosthesis to a posterior stabilizing type prosthesis. Another embodiment of the present invention relates to a method of making a knee prosthesis that is capable of conversion from a cruciate retaining type prosthesis to a posterior stabilizing type prosthesis. Another embodiment of the present invention relates to a method of making a knee prosthesis that is converted from a cruciate retaining type prosthesis to a posterior stabilizing type prosthesis.
Abstract:
One embodiment of the present invention relates to a knee prosthesis system with at least a first tibial portion element (a tibial insert or a tibial insert trial) and a second tibial portion element (a tibial insert or a tibial insert trial), wherein each of the first tibial portion element and the second tibial portion element has a different slope. Another embodiment of the present invention relates to a method of implanting a knee prosthesis, wherein the method utilizes at least a first tibial portion element (a tibial insert or a tibial insert trial) and a second tibial portion element (a tibial insert or a tibial insert trial), wherein each of the first tibial portion element and the second tibial portion element has a different slope.
Abstract:
Adjustable reverse shoulder prostheses are disclosed herein. A glenoid assembly includes a glenoid plate configured for fixation to a glenoid bone for a reverse shoulder prosthesis; a glenosphere configured for connection to the glenoid plate; and an adjustment plate, wherein the adjustment plate has a connection for directly engaging the glenosphere, and wherein the adjustment plate has an articulation for directly engaging the glenoid plate at a variable angular orientation. During a reverse total shoulder arthroplasty method, a glenoid plate is fixated to a glenoid bone; an adjustment plate, configured for interfacing with both the glenoid plate and a glenosphere, is locked to the glenoid plate, wherein the adjustment plate is configured for angular orientation or positional change relative to the glenoid plate; a glenosphere is connected to the adjustment plate; and an angular orientation and position of the glenosphere relative to the fixated glenoid plate is independently adjusted.
Abstract:
One embodiment of the present invention relates to a knee prosthesis system with at least a first tibial portion element (a tibial insert or a tibial insert trial) and a second tibial portion element (a tibial insert or a tibial insert trial), wherein each of the first tibial portion element and the second tibial portion element has a different slope. Another embodiment of the present invention relates to a method of implanting a knee prosthesis, wherein the method utilizes at least a first tibial portion element (a tibial insert or a tibial insert trial) and a second tibial portion element (a tibial insert or a tibial insert trial), wherein each of the first tibial portion element and the second tibial portion element has a different slope.
Abstract:
Various embodiments of the present invention are directed to a shoulder prosthesis. These embodiments may relate to a shoulder prosthesis including, for example, a humeral stem for fracture indication. Of note, certain embodiments of the present invention provide a humeral prosthesis with improved integration of the tuberosities around the humeral stem. Various methods relating to uses and applications of the prosthesis are also disclosed.
Abstract:
In one embodiment of the present invention a mobile bearing knee prosthesis may include an interface (e.g., a spherical radius interface) comprised of a concave superior surface on a tibial tray and a convex inferior surface on a tibial insert. In another embodiment of the present invention a mobile bearing knee prosthesis may include an interface (e.g., a spherical radius interface) comprised of a convex superior surface on a tibial tray and a concave inferior surface on a tibial insert. In another embodiment of the present invention a mobile bearing knee prosthesis may include a bi-concave interface (e.g., having a “wave” like surface geometry). This “wave” like surface geometry may be at the second bearing (i.e., at the interface between a tibial insert and a tibial tray in the mobile bearing knee as opposed to the interface between the tibial insert and a femoral component).
Abstract:
In one embodiment of the present invention a mobile bearing knee prosthesis may include an interface (e.g., a spherical radius interface) comprised of a concave superior surface on a tibial tray and a convex inferior surface on a tibial insert. In another embodiment of the present invention a mobile bearing knee prosthesis may include an interface (e.g., a spherical radius interface) comprised of a convex superior surface on a tibial tray and a concave inferior surface on a tibial insert. In another embodiment of the present invention a mobile bearing knee prosthesis may include a bi-concave interface (e.g., having a “wave” like surface geometry). This “wave” like surface geometry may be at the second bearing (i.e., at the interface between a tibial insert and a tibial tray in the mobile bearing knee as opposed to the interface between the tibial insert and a femoral component).