Abstract:
An electrical pressure-sensitive reflective display includes an array of display pixels, each with a transparent top surface, first electrode, second electrode, an elastic polymer medium, and metallic nanoparticles distributed in the elastic polymer medium. When a first voltage potential is applied between the first and second electrodes of each display pixel, a first color is reflected from the incident spectrum of light, assuming no pressure is applied on the top surface of each display pixel. When the top surface of a first display pixel is deformed in response to an applied pressure, the elastic polymer medium in the first display pixel is compressed, decreasing the metallic nanoparticle-to-metallic nanoparticle mean distance in the first display pixel. In response to decreasing the metallic nanoparticle-to-metallic nanoparticle mean distance, the color reflected from the incident spectrum of light by the second display pixel is changed from the first color to second color.
Abstract:
Colloidal-processed Si particle devices, device fabrication, and device uses have been presented. The generic device includes a substrate, a first electrode overlying the substrate, a second electrode overlying the substrate, laterally adjacent the first electrode, and separated from the first electrode by a spacing. A colloidal-processed Si particle layer overlies the first electrode, the second electrode, and the spacing between the electrodes. The Si particle layer includes a first plurality of nano-sized Si particles and a second plurality of micro-sized Si particles.
Abstract:
The present embodiments relate to a cable assembly with ultra-low capacitance. In one embodiment, a cable assembly is provided. The cable assembly includes an insulation layer. The insulation layer includes a low-permittivity insulation material.
Abstract:
The present embodiments relate to a cable assembly with ultra-low capacitance. In one embodiment, a cable assembly is provided. The cable assembly includes an insulation layer. The insulation layer includes a low-permittivity insulation material.
Abstract:
A method for tracking an object in a video data, comprises the steps of determining a plurality of particles for estimating a location of the object in the video data, determining a weight for each of the plurality of the particles, wherein the weights of two or more particles are determined substantially in parallel, and estimating the location of the object in the video data based upon the determined particle weights.
Abstract:
A color-tunable plasmonic device is provided with a partially modulated refractive index. A first dielectric layer overlies a bottom electrode, and has a refractive index non-responsive to an electric field. A second dielectric layer overlies the first dielectric layer, having a refractive index responsive to an electric field. An electrically conductive top electrode overlies the second dielectric layer. A plasmonic layer including a plurality of discrete plasmonic particles is interposed between the top and bottom electrodes. In one aspect, the plasmonic layer is interposed between the first and second dielectric layers. In a second aspect, the plasmonic layer is interposed between the first dielectric layer and the bottom electrode. In a third aspect, a first plasmonic layer is interposed between the first dielectric layer and the bottom electrode, and a second plasmonic layer of discrete plasmonic particles is interposed between the first dielectric layer and the second dielectric layer.
Abstract:
A plasmonic display device is provided with liquid crystal dipole molecule control. The device is made from a first set of electrodes including at least one electrically conductive top electrode and at least one electrically conductive bottom electrode capable of generating a first electric field in a first direction. A second set of electrodes, including an electrically conductive right electrode and an electrically conductive left electrode, is capable of generating a second electric field in a second first direction. A dielectric layer overlies the bottom electrode, made from a liquid crystal material with molecules having dipoles responsive to an electric field. A plasmonic layer, including a plurality of discrete plasmonic particles, is interposed between the first and second set of electrodes and in contact with the dielectric layer. In one aspect, the plasmonic layer is embedded in the dielectric layer.
Abstract:
The invention relates to canine immunoglobulin G (IgG) and canine interleukin-13 receptors (IL-13R) as well as fusion proteins containing canine IgG and/or canine IL-13R. In particular, the present invention discloses nucleic acid molecules encoding canine IgG, including species-specific regions of the heavy chain of canine IgG, and canine IL-13R alpha chain (IL-13Rα) proteins, particularly canine interleuken receptor alpha 1 (IL-13Rα1) and canine interleuken receptor alpha 2 (IL-13Rα2) proteins. Also included are canine IgG and IL-13Rα proteins, antibodies having selectivity for such proteins, inhibitors of such proteins and/or nucleic acid molecules, cells transformed with said nucleic acid molecules, assays employing such cells, nucleic acids molecules, proteins, antibodies and/or inhibitors, and therapeutic compositions comprising said nucleic acids molecules, proteins, antibodies and/or inhibitors. Also included are kits containing said molecules or chimera thereof, including their use to evaluate and regulate an immune response in an animal.
Abstract:
One aspect of the present invention relates to a method for the kinetic resolution of racemic and diastereomeric mixtures of chiral compounds. The critical elements of the method are: a non-racemic chiral tertiary-amine-containing catalyst; a racemic or diastereomeric mixture of a chiral substrate, e.g., a cyclic carbonate or cyclic carbamate; and a nucleophile, e.g., an alcohol, amine or thiol. A preferred embodiment of the present invention relates to a method for achieving the kinetic resolution of racemic and diastereomeric mixtures of derivatives of α- and β-amino, hydroxy, and thio carboxylic acids. In certain embodiments, the methods of the present invention achieve dynamic kinetic resolution of a racemic or diastereomeric mixture of a substrate, i.e., a kinetic resolution wherein the yield of the resolved enantiomer or diastereomer, respectively, exceeds the amount present in the original mixture due to the in situ equilibration of the enantiomers or diastereomers under the reaction conditions prior to the resolution step.
Abstract:
One aspect of the present invention relates to a method for the kinetic resolution of racemic and diastereomeric mixtures of chiral compounds. The critical elements of the method are: a non-racemic chiral tertiary-amine-containing catalyst; a racemic or diastereomeric mixture of a chiral substrate, e.g., a cyclic carbonate or cyclic carbamate; and a nucleophile, e.g., an alcohol, amine or thiol. A preferred embodiment of the present invention relates to a method for achieving the kinetic resolution of racemic and diastereomeric mixtures of derivatives of α- and β-amino, hydroxy, and thio carboxylic acids. In certain embodiments, the methods of the present invention achieve dynamic kinetic resolution of a racemic or diastereomeric mixture of a substrate, i.e., a kinetic resolution wherein the yield of the resolved enantiomer or diastereomer, respectively, exceeds the amount present in the original mixture due to the in situ equilibration of the enantiomers or diastereomers under the reaction conditions prior to the resolution step.